Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f'\left(x\right)=\dfrac{1-x}{\sqrt{2x-x^2}}\)
\(f'\left(x\right)\ge1\Leftrightarrow\dfrac{1-x}{\sqrt{2x-x^2}}\ge1\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-x^2>0\\1-x>0\\\left(1-x\right)^2\ge2x-x^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}0< x< 2\\x< 1\\2x^2-4x+1\ge0\end{matrix}\right.\) \(\Rightarrow0< x\le\dfrac{2-\sqrt{2}}{2}\)
f'(x)=\(\dfrac{2-2x}{2\sqrt{2x-x^2}}\) = \(\dfrac{1-x}{\sqrt{2x-x^2}}\)
để f'(x) \(\ge\) 1 \(\Leftrightarrow\) \(\dfrac{1-x}{\sqrt{2x-x^2}}\) \(\ge\) 1 \(\Leftrightarrow\) 1-x \(\ge\) \(\sqrt{2x-x^2}\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2x-x^2>0\\1-2x+x^2\ge2x-x^2\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}0< x< 2\\\left\{{}\begin{matrix}x< \dfrac{2-\sqrt{2}}{2}\\x>\dfrac{2+\sqrt{2}}{2}\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow\) 0<x\(\le\) \(\dfrac{2-\sqrt{2}}{2}\)
1, \(sin\left(x+\dfrac{\pi}{6}\right)+cos\left(x+\dfrac{\pi}{6}\right)=\dfrac{\sqrt{6}}{2}\)
⇔ \(\dfrac{\sqrt{2}}{2}sin\left(x+\dfrac{\pi}{6}\right)+\dfrac{\sqrt{2}}{2}cos\left(x+\dfrac{\pi}{6}\right)=\dfrac{\sqrt{3}}{2}\)
⇔ \(sin\left(x+\dfrac{\pi}{6}+\dfrac{\pi}{4}\right)=sin\dfrac{\pi}{4}\)
2, \(\left(\sqrt{3}-1\right)sinx+\left(\sqrt{3}+1\right)cosx=1-\sqrt{3}\)
⇔ \(\dfrac{\left(\sqrt{3}-1\right)}{2\sqrt{2}}sinx+\dfrac{\left(\sqrt{3}+1\right)}{2\sqrt{2}}cosx=\dfrac{1-\sqrt{3}}{2\sqrt{2}}\)
⇔ sinx . si
\(32sin^6\dfrac{x}{2}+sin3x=3sinx\)
\(\Leftrightarrow32sin^6\dfrac{x}{2}+3sinx-4sin^3x=3sinx\)
\(\Leftrightarrow8sin^6\dfrac{x}{2}=sin^3x\)
\(\Leftrightarrow8sin^6\dfrac{x}{2}=8sin^3\dfrac{x}{2}.cos^3\dfrac{x}{2}\)
\(\Leftrightarrow sin^3\dfrac{x}{2}\left(1-cos^3\dfrac{x}{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\dfrac{x}{2}=0\\cos\dfrac{x}{2}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x}{2}=k\pi\\\dfrac{x}{2}=k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=k4\pi\end{matrix}\right.\)
\(\Leftrightarrow x=k2\pi\)
\(L=\lim\limits_{x\rightarrow0}\frac{\sqrt[3]{1+x^2}-\sqrt[4]{1-2x}}{x^2+x}=\lim\limits_{x\rightarrow0}\frac{\left(1+x^2\right)^{\frac{1}{3}}-\left(1-2x\right)^{\frac{1}{4}}}{x^2+x}\)
\(=\lim\limits_{x\rightarrow0}\frac{\frac{2}{3}x\left(1+x^2\right)^{-\frac{2}{3}}+\frac{1}{2}\left(1-2x\right)^{-\frac{3}{4}}}{2x+1}=\frac{1}{2}\)
\(1=\lim\limits_{x\rightarrow0}\frac{\sqrt{x+4}-2}{2x}=\lim\limits_{x\rightarrow0}\frac{x}{2x}.\frac{1}{\sqrt{x+4}+2}=\lim\limits_{x\rightarrow0}\frac{1}{2\left(\sqrt{x+4}+2\right)}=\frac{1}{2\left(\sqrt{4}+2\right)}\)
\(2=\lim\limits_{x\rightarrow1}\frac{\sqrt{x+3}-2}{x-1}=\lim\limits_{x\rightarrow1}\frac{x-1}{x-1}.\frac{1}{\sqrt{x+3}+2}=\lim\limits_{x\rightarrow1}\frac{1}{\sqrt{x+3}+2}=\frac{1}{\sqrt{1+3}+2}\)
\(3=\lim\limits_{x\rightarrow3}\frac{\sqrt{2x+3}-x}{\left(x-1\right)\left(x-3\right)}=\lim\limits_{x\rightarrow3}\frac{2x+3-x^2}{\left(x-1\right)\left(x-3\right)}.\frac{1}{\sqrt{2x+3}+x}\)
\(=\lim\limits_{x\rightarrow3}\frac{\left(x+1\right)\left(3-x\right)}{\left(x-1\right)\left(x-3\right)}.\frac{1}{\sqrt{2x+3}+x}=\lim\limits_{x\rightarrow3}\frac{x+1}{\left(1-x\right)\left(\sqrt{2x+3}+x\right)}=\frac{3+1}{\left(1-3\right)\left(\sqrt{9}+3\right)}\)
\(4=\lim\limits_{x\rightarrow2}\frac{\left(x-2\right)\left(2x-1\right)}{\left(x+1\right)^2\left(x-2\right)}=\lim\limits_{x\rightarrow2}\frac{2x-1}{\left(x+1\right)^2}=\frac{4-1}{\left(2+1\right)^2}\)
P/s: lần sau bạn sử dụng tính năng gõ công thức ở kí hiệu \(\sum\) góc trên cùng bên trái khung soạn thảo ấy, khó nhìn đề quá chẳng muốn làm
*** Mình nhớ là đã nhắc nhở bạn về việc sử dụng hộp công thức toán để viết đề dễ hiểu hơn. Lần nữa thì mình xin phép xóa bài nhé. Bạn sử dụng bộ gõ công thức toán ở biểu tượng $\sum$
Lời giải:
\(\lim\limits_{x\to +\infty}(\sqrt[3]{x^3+5x}-\sqrt{x^2-3x+6})=\lim\limits_{x\to +\infty}[(\sqrt[3]{x^3+5x}-x)-(\sqrt{x^2-3x+6}-x)]\)
\(=\lim\limits_{x\to +\infty}\left[\frac{5x}{\sqrt[3]{(x^3+5x)^2}+x\sqrt[3]{x^3+5x}+x^2}-\frac{-3x+6}{\sqrt{x^2-3x+6}+x}\right]\)
\(=\lim\limits_{x\to +\infty}[\frac{5}{\sqrt[3]{x^3+10x+\frac{25}{x}}+\sqrt[3]{x^2+5x}+x}-\frac{-3+\frac{6}{x}}{\sqrt{1-\frac{3}{x}+\frac{6}{x^2}}+1}]\)
\(=(0-\frac{-3}{2})=\frac{3}{2}\)