K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2016

bài này nhìn ko hiểu lắm

\(x-4\)

\(\left(\sqrt{2}\right)^2-4\)

\(=\left(\sqrt{2}-2\right)\left(\sqrt{2}+2\right)\)

23 tháng 5 2021

Xét \(5-x=0\Leftrightarrow x=5\)

\(x-1=0\Leftrightarrow x=1\)

\(2+3x=0\Leftrightarrow x=-\dfrac{2}{3}\)

Bảng xét dấu:

x -vc -2/3 1 5 +vc 5-x x-1 2+3x VT 0 0 0 0 0 0 - + + + - + + + + + - - - + - +

Để VT\(\le\)0 <=>\(\left[{}\begin{matrix}-\dfrac{2}{3}\le x\le1\\x\ge5\end{matrix}\right.\)

Vậy...

23 tháng 5 2021

(5-x)(x-1)(2+3x) ≤ 0

↔ 5-x≤0 <=> x≥5 (1)

x-1 ≤ 0<=> x≤ 1 (2)

2+3x ≤ 0 <=> x≤ -2/3 (3)

Từ (1),(2),(3) ta có:

  x≥5 or x≤1 or x≤ -2/3

chúc bạn học tốt !!!

 

14 tháng 9 2023

\(2+\dfrac{3\left(x+1\right)}{3}\le3-\dfrac{x-1}{4}\)

\(\Leftrightarrow2+x+1\le\dfrac{12}{4}-\dfrac{x-1}{4}\)

\(\Leftrightarrow x+3\le\dfrac{13-x}{4}\)

\(\Leftrightarrow\dfrac{4x+12}{4}\le\dfrac{13-x}{4}\)

\(\Leftrightarrow4x+12\le13-x\)

\(\Leftrightarrow4x+x\le13-12\)

\(\Leftrightarrow5x\le1\)

\(\Leftrightarrow x\le\dfrac{1}{5}\)

Vậy: \(x\le\dfrac{1}{5}\) 

14 tháng 9 2023

\(2+\dfrac{3\left(x+1\right)}{3}\le3-\dfrac{x-1}{4}\)

\(\Leftrightarrow\dfrac{12x+36}{12}\le\dfrac{33-3x}{12}\)

\(\Leftrightarrow12x+36\le33-3x\)

\(\Leftrightarrow12x+3x\le-36+33\)

\(\Leftrightarrow15x\le-3\)

\(\Leftrightarrow x\le\dfrac{-1}{5}\)

14 tháng 9 2023

\(a,\dfrac{2x-1}{3}< \dfrac{x+6}{2}\)

\(\Leftrightarrow\dfrac{4x-2}{6}< \dfrac{3x+18}{6}\)

\(\Leftrightarrow4x-2< 3x+18\)

\(\Leftrightarrow4x-3x< 2+18\)

\(\Leftrightarrow x< 20\)

\(b,\dfrac{5\left(x-1\right)}{6}-1>\dfrac{2\left(x+1\right)}{3}\)

\(\Leftrightarrow\dfrac{5x-11}{6}>\dfrac{4x+4}{6}\)

\(\Leftrightarrow5x-11>4x+4\)

\(\Leftrightarrow5x-4x>11+4\)

\(\Leftrightarrow x>15\)

18 tháng 11 2018

mk lm k chắc đúng, sai đâu ib mk nhé

DKXD:  \(x\ge-\frac{1}{2};\)\(x\ne0\)

Dat:   \(\sqrt{2x+1}=a\)  \(\left(a\ge0;a\ne1\right)\)

Khi đó bpt đã cho trở thành:

\(\frac{a^2-1}{a-1}>a^2+1\)

<=>  \(a+1>a^2+1\)

<=>  \(a\left(1-a\right)>0\)

<=>  \(1-a>0\)

<=>  \(a< 1\)

Khi đó:  \(\sqrt{2x+1}< 1\)   

<=>  \(2x+1< 1\)

<=>   \(x< 0\)

Vay:    \(-\frac{1}{2}\le x< 0\)