K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2019

\(\Leftrightarrow\left(x^2+2x\right)\left(3x^2+4x+8\right)>0\)

\(\Leftrightarrow\left(x>-2/x\ne0\right)\)

2 tháng 4 2019

bạn làm chi tiết ra hộ ko ạ

\(a,3x-2\ge x+4\)   => \(2x\ge6\)=>\(x\ge3\)

3 tháng 3 2020

\(a,\left(2x^2+1\right)+4x>2x\left(x-2\right)\)

\(\Leftrightarrow2x^2+1+4x>2x^2-4x\)

\(\Leftrightarrow4x+4x>-1\)

\(\Leftrightarrow8x>-1\)

\(\Leftrightarrow x>-\frac{1}{8}\)

\(b,\left(4x+3\right)\left(x-1\right)< 6x^2-x+1\)

\(\Leftrightarrow4x^2-4x+3x-3< 6x^2-x+1\)

\(\Leftrightarrow4x^2-x-3< 6x^2-x+1\)

\(\Leftrightarrow4x^2-6x^2< 1+3\)

\(\Leftrightarrow-2x^2< 4\)

\(\Leftrightarrow x^2>2\)

\(\Leftrightarrow x>\pm\sqrt{2}\)

a: \(\Leftrightarrow2x^2+4x+4>x^2+4x+4\)

=>x2>0

hay x<>0

b: \(\Leftrightarrow x^2+6x+8-\left(x^2+6x-16\right)-26>0\)

\(\Leftrightarrow x^2+6x-18-x^2-6x+16>0\)

=>-2>0(vô lý)

24 tháng 4 2019

\(\left(x-4\right).\left(x+4\right)\ge\left(x+3\right)^2+5\)

\(\Rightarrow x^2-16\ge x^2+6x+9+5\)

\(\Rightarrow x^2-16\ge x^2+6x+14\)

\(\Rightarrow-30\ge6x\Rightarrow-5\ge x\)

Vậy...

2 tháng 4 2017

\(\left(x-1\right)\left(x+1\right)-2\left(2x+3\right)\le\left(x-2\right)^2+x\)

\(\Leftrightarrow x^2-1-4x-6\le x^2-4x+4+x\)

\(\Leftrightarrow x^2-4x-7\le x^2-3x+4\)

\(\Leftrightarrow x^2-4x-x^2+3x\le7+4\)

\(\Leftrightarrow-x\le11\)

\(\Leftrightarrow x\le-11\)

2 tháng 4 2017

biết đừng đăng anh à

22 tháng 4 2017

a)3 – 2x > 4 ⇔ 3 – 4 > 2x ⇔ -1 > 2x

\(\Leftrightarrow-\dfrac{1}{2}>x\)

Vậy nghiệm của bất phương trình: \(x< -\dfrac{1}{2}\)

b)3x + 4 < 2 ⇔3x < 2 – 4 ⇔ 3x < -2 \(\Leftrightarrow x< -\dfrac{2}{3}\)

Vậy nghiệm của bất phương trình: \(x\) \(< -\dfrac{2}{3}\)

c)(x – 3)2 < x2 – 3 ⇔x2 – 6x + 9 <x2 – 3

⇔x2 – 6x – x2 < -3 – 9

⇔-6x < -12

⇔x > 2

Vậy nghiệm của bất phương trình : x > 2

d)(x-3)(x+3) < (x+2)2 + 3 \(\Leftrightarrow\) x2 – 9 < x2 + 4x + 4 +3

\(\Leftrightarrow\)x2 – x2 – 4x < 4 + 3 + 9

\(\Leftrightarrow\)-4x < 16

\(\Leftrightarrow\)x > -4

Vậy nghiệm của bất phương trình x > -4.



a: \(\Leftrightarrow20x^2-12x+15x+5< 10x\left(2x+1\right)-30\)

\(\Leftrightarrow20x^2+3x+5< 20x^2+10x-30\)

=>3x+5<10x-30

=>-7x<-35

hay x>5

b: \(\Leftrightarrow4\left(5x-20\right)-6\left(2x^2+x\right)>4x\left(1-3x\right)-15x\)

\(\Leftrightarrow20x-80-12x^2-6x>4x-12x^2-15x\)

=>14x-80>-11x

=>25x>80

hay x>16/5

6 tháng 4 2017

Để \(\left(4x-1\right)\left(x^2+12\right)\left(-x+4\right)>0\Leftrightarrow\hept{\begin{cases}4x-1>0\\-x+4>0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}4x>1\\-x>-4\end{cases}\Rightarrow\hept{\begin{cases}x>\frac{1}{4}\\x< 4\end{cases}\Rightarrow}\frac{1}{4}< x< 4}\)

Vậy \(\frac{1}{4}< x< 4\)