Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{2x-1}< 3\)
\(\Leftrightarrow2x-1< 9\)
\(\Leftrightarrow2x< 10\)
\(\Leftrightarrow x< 5\)
\(\sqrt{2x-1}\)có nghĩa khi \(2x-1< 0\)
\(\Leftrightarrow2x< 1\)
\(\Leftrightarrow1x\le\frac{1}{2}\)
Từ đó x<1/2
\(\Rightarrow\sqrt{2x-1}< 3\)
B tương tự
BPT tương đương:
\(\sqrt[3]{x+2}-\sqrt[3]{2x^2+1}< \sqrt[3]{2x^2}-\sqrt[3]{x+1}\)
Do bình phương thiếu của tổng/hiệu luôn dương, nhân liên hợp tử mẫu mỗi vế với bình phương thiếu của tổng thì BPT ko đổi chiều:
\(\Leftrightarrow\dfrac{x+2-2x^2-1}{\sqrt[3]{\left(x+2\right)^2}+\sqrt[3]{\left(x+2\right)\left(2x^2+1\right)+\sqrt[3]{\left(2x^2+1\right)^2}}}< \dfrac{2x^2-x-1}{\sqrt[3]{4x^4}+\sqrt[3]{2x^2\left(x+1\right)}+\sqrt[3]{\left(x+1\right)^2}}\)
Dài quá, ta viết tắt lại \(\dfrac{-\left(2x^2-x-1\right)}{MS1}< \dfrac{2x^2-x-1}{MS2}\)
\(\Leftrightarrow\left(2x^2-x-1\right)\left(\dfrac{1}{MS1}+\dfrac{1}{MS2}\right)>0\)
\(\Leftrightarrow2x^2-x-1>0\) (do biểu thức trong ngoặc thứ 2 luôn dương)
\(\Rightarrow x< -\dfrac{1}{2}\) hoặc \(x>1\)
Đặt\(\left\{{}\begin{matrix}\sqrt[3]{x+1}=a\\\sqrt[3]{2x^{^2}}=b\end{matrix}\right.\)
\(\Rightarrow a+\sqrt[3]{a^3+1}< b+\sqrt[3]{b^3+1}\)
Đễ thấy hàm số dạng: \(f\left(t\right)=t+\sqrt[3]{t^3+1}\) đồng biến trên R nên
\(\Rightarrow a< b\)
\(\Leftrightarrow\sqrt[3]{x+1}< \sqrt[3]{2x^2}\)
\(\Leftrightarrow2x^2-x-1>0\)
\(\Leftrightarrow\left[{}\begin{matrix}x>1\\x< -\dfrac{1}{2}\end{matrix}\right.\)
1 ĐKXD \(x\ge1\)
.\(2x^2+5x-1=7\sqrt{\left(x-1\right)\left(x^2+x+1\right)}\)
Đặt \(\sqrt{x-1}=a;\sqrt{x^2+x+1}=b\left(a,b\ge0\right)\)
=> \(2b^2+3a^2=2x^2+5x-1\)
=> \(2b^2+3a^2-7ab=0\)
<=> \(\orbr{\begin{cases}a=2b\\a=\frac{1}{3}b\end{cases}}\)
+ \(a=2b\)
=> \(2\sqrt{x^2+x+1}=\sqrt{x-1}\)
=> \(4x^2+3x+5=0\)vô nghiệm
+ \(a=\frac{1}{3}b\)
=> \(\sqrt{x^2+x+1}=3\sqrt{x-1}\)
=> \(x^2-8x+10=0\)
<=> \(\orbr{\begin{cases}x=4+\sqrt{6}\left(tmĐK\right)\\x=4-\sqrt{6}\left(kotmĐK\right)\end{cases}}\)
Vậy \(x=4+\sqrt{6}\)
ĐKXĐ:\(2x^2-1\ge0;x^2-3x-2\ge0;2x^2+2x+3\ge0;x^2-x+2\ge0\)
\(\sqrt{2x^2-1}+\sqrt{x^2-3x-2}=\sqrt{2x^2+2x+3}+\sqrt{x^2-x+2}\)
<=> \(\left(\sqrt{2x^2+2x+3}-\sqrt{2x^2-1}\right)+\left(\sqrt{x^2-x+2}-\sqrt{x^2-3x-2}\right)=0\)
\(\Leftrightarrow\frac{2x+4}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{2x+4}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}=0\)
<=> \(\left(2x+4\right)\left(\frac{1}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{1}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}\right)=0\)(1)
Vì \(\frac{1}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{1}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}>0\)
nên pt(1) <=> \(2x+4=0\Leftrightarrow x=-2\)(tmđk)
Vậy x=-2
Em kiểm tra lại đề bài câu trên nhé
Đặt \(\hept{\begin{cases}\sqrt[3]{x+1}=a\\\sqrt[3]{2x^2}=b\end{cases}}\)
\(\Rightarrow a+\sqrt[3]{x^3+1}< b+\sqrt[3]{b^3+1}\)
Dễ thấy hàm số dạng \(f\left(t\right)=t+\sqrt[3]{t^3+1}\)đồng biến trên R nên
\(\Rightarrow a< b\)
\(\Leftrightarrow\sqrt[3]{x+1}< \sqrt[3]{2x^2}\)
\(\Leftrightarrow2x^2-x-1>0\)
\(\Leftrightarrow\orbr{\begin{cases}x>1\\x< -\frac{1}{2}\end{cases}}\)
Cách khác: Dùng liên hợp.
bpt <=> \(\left(\sqrt[3]{2x^2}-\sqrt[3]{x+1}\right)+\left(\sqrt[3]{2x^2+1}-\sqrt[3]{x+2}\right)>0\)
<=> \(\frac{2x^2-x-1}{\left(\sqrt[3]{2x^2}\right)^2+\sqrt[3]{2x^2}.\sqrt[3]{x+1}+\left(\sqrt[3]{x+1}\right)^2}\)
\(+\frac{2x^2-x-1}{\left(\sqrt[3]{2x^2+1}\right)^2+\sqrt[3]{2x^2+1}.\sqrt[3]{x+2}+\left(\sqrt[3]{x+2}\right)^2}>0\)
<=> \(2x^2-x-1>0\)