\(5-m\left(x+1\right)>x-m\)   ( m là tham số )

b...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2019

a) pt (1) có 2 nghiệm dương phân biệt => \(\hept{\begin{cases}\Delta_1=1-4m>0\\m>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m< \frac{1}{4}\\m>0\end{cases}}\Leftrightarrow0< m< \frac{1}{4}\)

pt (2) có 2 nghiệm dương phân biệt => \(\hept{\begin{cases}\Delta_2=1-4m>0\\\frac{1}{m}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m< \frac{1}{4}\\m>0\end{cases}}\Leftrightarrow0< m< \frac{1}{4}\)

=> để 2 pt có 2 nghiệm dương phân biệt thì \(0< m< \frac{1}{4}\)

b) \(x_1x_2x_3+x_2x_3x_4+x_3x_4x_1+x_4x_1x_2=x_1x_2\left(x_3+x_4\right)+x_3x_4\left(x_1+x_2\right)=m.\frac{1}{m}+\frac{1}{m}.1=\frac{1}{m}+1>\frac{1}{\frac{1}{4}}+1=5\)

12 tháng 3 2020

Phương trình đã cho có nghiệm\(\Leftrightarrow\Delta'=m-1\ge0\Leftrightarrow m\ge1\)

Theo hệ thức Vi - et, ta có: \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2-m\end{cases}}\)

\(\Rightarrow m=x_1+x_2-x_1x_2\),Thay vào hệ thức \(2x_1^3+\left(m+2\right)x_2^2=5\),ta được:

\(2x_1^3+\left(2x_1+2x_2-x_1x_2\right)x_2^2=5\)

\(\Leftrightarrow2x_1^3+2x_1x_2^2+2x_2^3-x_1x_2^3=5\)

\(\Leftrightarrow2\left(x_1^3+x_2^3\right)-x_1x_2\left(x_2^2-2x_2\right)=5\)

\(\Leftrightarrow2\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]-x_1x_2\left(x_2^2-2x_2\right)=5\)

Vì x2 là nghiệm nên \(x_2^2-2x_2+2-m=0\)

\(\Leftrightarrow x_2^2-2x_2=m-2\left(1\right)\)

Đến đây tiếp tục dùng viet và tìm được m = 1

P/S: Không chắc

20 tháng 6 2021

a) Ta có  : \(\Delta'=\left(m+1\right)^2-\left(m^2+4m+3\right)=-2m-2\)

Để pt có 2 nghiệm phân biêt \(\Leftrightarrow\Delta'>0\Leftrightarrow m< -1\)

b) Theo hệ thức Viet \(\hept{\begin{cases}S=x_1+x_2=-2\left(m+1\right)\\P=x_1x_2=m^2+4m+3\end{cases}}\)

\(\Rightarrow A=m^2+4m+3+4\left(m+1\right)=m^2+4m+3+4m+4=m^2+8m+7\)

c) Ta có : \(A=m^2+8m+7=m^2+8m+16-9=\left(m+4\right)^2-9\ge-9\)

Dấu " = " xảy ra khi <=> m = -4 ( tm m < -1 )

Vậy minA = -9 tại m = -4

15 tháng 3 2017

a = 1 , b = - ( 2m + 1 ) , c = m - 3

\(\Delta=b^2-4ac\)

     \(=\left[-\left(2m+1\right)\right]^2-4.1.\left(m-3\right)\)

      \(=4m^2+4m+1-4m+12\)

        \(=4m^2+13>0\forall m\)

Vậy: Pt (1) luôn có 2 nghiệm phân biệt với mọi m

Theo Vi-et ta có: \(P=x_1x_2=\frac{c}{a}=m-3\)

   \(A=3x_1x_2-2x_1x_2\ge4\)

 \(A=3P-2P\ge4\)

 \(A=P=m-3\ge4\Leftrightarrow m\ge7\)

Chuyển vế :

\(x_1^2=2\left(m+1\right)x_1-m^2+1\)

thay vào Phuogw trình tìm m thôi

3 tháng 6 2017

1. Với m=5

\(\Rightarrow x^2-\left(2.5+1\right).x+5^2-1=0\\ \Rightarrow x^2-11.x=-24\\ \)

\(\Rightarrow x^2-\frac{11}{2}.2.x+\left(\frac{11}{2}\right)^2=-24-\left(\frac{11}{2}\right)^2=\frac{-217}{4}\\ \Rightarrow\left(x+\frac{11}{2}\right)^2=-\frac{217}{4}\)

nên x thuộc rỗng

27 tháng 4 2018

phương trình đâu vậy bạn

27 tháng 4 2018

Ở đề đấy bạn

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Bài 1:

\(A=\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}=\sqrt{2+3-2\sqrt{2.3}}+\sqrt{2+3+2\sqrt{2.3}}\)

\(=\sqrt{(\sqrt{2}-\sqrt{3})^2}+\sqrt{\sqrt{2}+\sqrt{3})^2}\)

\(=|\sqrt{2}-\sqrt{3}|+|\sqrt{2}+\sqrt{3}|=\sqrt{3}-\sqrt{2}+\sqrt{2}+\sqrt{3}=2\sqrt{3}\)

\(B=(\sqrt{10}+\sqrt{6})\sqrt{8-2\sqrt{15}}\)

\(=(\sqrt{10}+\sqrt{6}).\sqrt{3+5-2\sqrt{3.5}}\)

\(=(\sqrt{10}+\sqrt{6})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)

\(=\sqrt{2}(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})=\sqrt{2}(5-3)=2\sqrt{2}\)

\(C=\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\)

\(C^2=8+2\sqrt{(4+\sqrt{7})(4-\sqrt{7})}=8+2\sqrt{4^2-7}=8+2.3=14\)

\(\Rightarrow C=\sqrt{14}\)

\(D=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{2}\sqrt{3-\sqrt{5}}\)

\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{6-2\sqrt{5}}\)

\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{5+1-2\sqrt{5.1}}\)

\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{(\sqrt{5}-1)^2}\)

\(=(3+\sqrt{5})(\sqrt{5}-1)^2=(3+\sqrt{5})(6-2\sqrt{5})=2(3+\sqrt{5})(3-\sqrt{5})=2(3^2-5)=8\)

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Bài 2:

a) Bạn xem lại đề.

b) \(x-2\sqrt{xy}+y=(\sqrt{x})^2-2\sqrt{x}.\sqrt{y}+(\sqrt{y})^2=(\sqrt{x}-\sqrt{y})^2\)

c)

\(\sqrt{xy}+2\sqrt{x}-3\sqrt{y}-6=(\sqrt{x}.\sqrt{y}+2\sqrt{x})-(3\sqrt{y}+6)\)

\(=\sqrt{x}(\sqrt{y}+2)-3(\sqrt{y}+2)=(\sqrt{x}-3)(\sqrt{y}+2)\)