Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2-2x+3>0\)
\(\left(x-1\right)^2+2>0\) =>N0 đúng với mọi x
b)
\(x^2-6x+9>0\Leftrightarrow\left(x-3\right)^2>0\Rightarrow N_0\forall x\ne3\)
a) 6x^2 -x-2>=0
\(\Delta=1+24=25\)
\(\Rightarrow\left[{}\begin{matrix}x\le\dfrac{1-5}{2.6}=\dfrac{-1}{3}\\x\ge\dfrac{1+5}{2.6}=\dfrac{1}{2}\end{matrix}\right.\)
b)
\(\dfrac{1}{3}x^2+3x+6< 0\Leftrightarrow x^2+9x+18< 0\left\{\Delta=81-4.18=9\right\}\)
\(x_1=\dfrac{-9-3}{2}=-6;x_2=\dfrac{-9+3}{2}=-3\)
\(N_0BPT:\) \(-6< x< -3\)
1. \(\Leftrightarrow\left(2x-1\right)\left(3x+1\right)< 0\)
\(\Rightarrow-\frac{1}{3}< x< \frac{1}{2}\)
2. \(\Leftrightarrow\left(x-2\right)\left(3-2x\right)>0\)
\(\Rightarrow\frac{3}{2}< x< 2\)
3. \(\Leftrightarrow\left(5x-3\right)^2>0\)
\(\Rightarrow x\ne\frac{3}{5}\)
4. \(\Leftrightarrow-3\left(x-\frac{1}{6}\right)-\frac{59}{12}< 0\)
\(\Rightarrow x\in R\)
5. \(\Leftrightarrow2\left(x-1\right)^2+5\ge0\)
\(\Rightarrow x\in R\)
6. \(\Leftrightarrow\left(x+2\right)\left(8x+7\right)\le0\)
\(\Rightarrow-2\le x\le-\frac{7}{8}\)
7.
\(\Leftrightarrow\left(x-1\right)^2+2>0\)
\(\Rightarrow x\in R\)
8. \(\Leftrightarrow\left(3x-2\right)\left(2x+1\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}x\le-\frac{1}{2}\\x\ge\frac{2}{3}\end{matrix}\right.\)
9. \(\Leftrightarrow\frac{1}{3}\left(x+3\right)\left(x+6\right)< 0\)
\(\Rightarrow-6< x< -3\)
10. \(\Leftrightarrow x^2-6x+9>0\)
\(\Leftrightarrow\left(x-3\right)^2>0\)
\(\Rightarrow x\ne3\)
|3x+4)/(x-2)| <=3
<=>|3 +10/(x-2) | <=3
10/(x-2) =t
<=> |3+t| <=3
9 +6t +t^2 <=9 <=> -6<=t <=0
10/(x-2) <=0 => x<2
10/(x-2) >=-6 <=>5/(x-2)>=-3
<=>5 <=-3(x-2) <=>3x <=10-5 =5 => x <=5/3
kết luận x<= 5/3
a) \(\left|\frac{3x+4}{x-2}\right|< =3̸\) đk: x\(\ne\) 2
BPT \(\Leftrightarrow\) \(\left\{{}\begin{matrix}\frac{3x+4}{x-2}\ge-3\\\frac{3x+4}{x-2}\le3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\frac{3x+4}{x-2}+3\ge0\\\frac{3x+4}{x-2}-3\le0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}\frac{6x-2}{x-2}\ge0\\\frac{10}{x-2}\le0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}\left[{}\begin{matrix}x\le\frac{1}{3}\\x>2\end{matrix}\right.\\x< 2\end{matrix}\right.\Rightarrow}x\le\frac{1}{3}}\)
b) \(\left|\frac{2x-1}{x-3}\right|\ge1\) đk: x\(\ne\) 3
BPT \(\Leftrightarrow\left[{}\begin{matrix}\frac{2x-3}{x-3}\le-1\\\frac{2x-3}{x-3}\ge1\end{matrix}\right.\)
ta có:
+) \(\frac{2x-3}{x-3}\le-1\Leftrightarrow\frac{2x-3}{x-3}+1\le0\Leftrightarrow\frac{3x-6}{x-3}\le0\Leftrightarrow2\le x< 3\)
+) \(\frac{2x-3}{x-3}\ge1\Leftrightarrow\frac{2x-3}{x-3}-1\ge0\Leftrightarrow\frac{x}{x-3}\ge0\Leftrightarrow\left[{}\begin{matrix}x\le0\\x>3\end{matrix}\right.\)
vậy tập nghiệm là: \((-\infty;0]\cup[2;3)\cup(3;+\infty)\)
2:
a: =>2x^2-4x-2=x^2-x-2
=>x^2-3x=0
=>x=0(loại) hoặc x=3
b: =>(x+1)(x+4)<0
=>-4<x<-1
d: =>x^2-2x-7=-x^2+6x-4
=>2x^2-8x-3=0
=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)
a/ \(\Leftrightarrow x^2-6x+9< 0\)
\(\Leftrightarrow\left(x-3\right)^2< 0\)
BPT vô nghiệm
b/ \(\Leftrightarrow12x^2-3x+1>0\)
\(\Leftrightarrow12\left(x-\frac{1}{8}\right)^2+\frac{13}{16}>0\) (luôn đúng)
Vậy tập nghiệm của BPT là \(D=R\)
c/ \(\Leftrightarrow2\left(x-4\right)\left(x-1\right)\left(x-3\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}1< x< 3\\x>4\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}27x^3+6x^2+6x+2>0\\5-x^2-4x^3>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>-0.301\\x< 1\end{matrix}\right.\Leftrightarrow-0.301< x< 1\)
TH2: \(\left\{{}\begin{matrix}27x^3+6x^2+6x+2< 0\\5-x^2-4x^3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< -0.301\\x>1\end{matrix}\right.\Leftrightarrow x\in\varnothing\)