">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2018

Ta có:

+)\(\left|1-x\right|=\left[{}\begin{matrix}1-x\left(x\ge0\right)\\-\left(1-x\right)=-1+x=x-1\left(x< 0\right)\end{matrix}\right.\)

+)\(\left|2x-1\right|=\left[{}\begin{matrix}2x-1\left(x\ge0\right)\\-\left(2x-1\right)=-2x+1=1-2x\left(x< 0\right)\end{matrix}\right.\)

Do đó ta có 2 trường hợp:

+) \(1-x+2x-1>5\) với \(x\ge0\)

\(\Leftrightarrow3x>5\\ \Leftrightarrow x>\dfrac{5}{3}\)

+)\(x-1+1-2x>5\) với \(x< 0\)

\(\Leftrightarrow-x>5\\ \Leftrightarrow x< 5\)

Do \(x< 5\) trái với ĐK nên loại.

Vậy PT có tập hợp \(\left\{x|x>\dfrac{5}{3}\right\}\)

13 tháng 2 2019

a) chưa học :v

b) \(\frac{x-1}{x-3}>2\)ĐKXĐ : \(x\ne3\)

\(\Leftrightarrow x-1>2\left(x-3\right)\)

\(\Leftrightarrow x-1>2x-6\)

\(\Leftrightarrow x-1-2x+6>0\)

\(\Leftrightarrow-x+5>0\)

\(\Leftrightarrow x>5\)( thỏa mãn ĐKXĐ )

Vậy....

14 tháng 2 2019

a) Dùng bảng xét dấu xem sao (tự lập):v

+)Với \(x< -\frac{3}{2}\);phương trình trở thành:

\(x+3=x-1\Leftrightarrow0=-4\) (vô lí,loại)

+)Với \(-\frac{3}{2}\le x< 0\);phương trình trở thành:

\(-3x-3=x-1\Leftrightarrow4x=-2\Leftrightarrow x=-\frac{1}{2}\) (t/m)

+)Với \(x\ge0\);phương trình trở thành:

\(-x-3=x-1\Leftrightarrow2x=-2\Leftrightarrow x=-1\) (loại)

Vậy tập hợp nghiệm của phương trình: \(x=\left\{-\frac{1}{2}\right\}\)

15 tháng 8 2019

\(\left|x^2-9\right|=\left|-7\right|\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-9=7\\x^2-9=-7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2=16\\x^2=2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\pm4\\x=\pm\sqrt{2}\end{cases}}\)

19 tháng 8 2020

x2 + 6x - 16 > 2x - 7

<=> x2 + 6x - 2x > -7 + 16

<=> x2 + 4x > 9

<=> x2 + 4x + 4 > 9 + 4

<=> ( x + 2 )2 > 13

<=> ( x + 2 )2 > \(\left(\pm\sqrt{13}\right)^2\)

<=> \(\orbr{\begin{cases}x+2>\sqrt{13}\\x+2>-\sqrt{13}\end{cases}\Rightarrow}\orbr{\begin{cases}x>\sqrt{13}-2\\x>-2-\sqrt{13}\end{cases}}\)

24 tháng 7 2019

\(x-\left|4+x\right|=7\)

\(\Leftrightarrow\left|4+x\right|=2x-7\)

\(\Leftrightarrow\orbr{\begin{cases}4+x=2x-7\\4+x=-2x+7\end{cases}}\)

Đến đây dễ r

1 tháng 7 2019

\(3y-7>0\)

\(\Rightarrow3x>7\)

\(\Rightarrow x>\frac{7}{3}\)

\(KL:\left\{x\in Z/x>\frac{7}{3}\right\}\)

1 tháng 7 2019

\(3y-7>0\Rightarrow3y>7\)

\(3\cdot2=6< 7,3\cdot3=9>7\Rightarrow y>2\)

25 tháng 7 2016

Ta có : \(32-3x< 13\Leftrightarrow-3x< 19\Rightarrow x>\frac{-19}{3}.\)

vậy bpt có nghiệm \(x>-\frac{19}{3}\)

14 tháng 5 2020

\(\left|x-7\right|+\left|x-5\right|=2\)

Ta có \(\hept{\begin{cases}\left|x-7\right|\ge x-7\\\left|x-5\right|\ge x-5\end{cases}\Rightarrow\left|x-7\right|+\left|x-5\right|\ge x-7+x-5=2x-12}\)

Mà \(\left|x-7\right|+\left|x-5\right|=2\)

\(\Rightarrow2\ge2x-12\)hay \(2x-12\le2\)

\(\Leftrightarrow2x\le14\)

\(\Leftrightarrow x\le7\)

a, Đặt \(x^2-4x+8=a\left(a>0\right)\)

\(\Rightarrow a-2=\frac{21}{a+2}\)

\(\Leftrightarrow a^2-4=21\Rightarrow a^2=25\Rightarrow a=5\)

Thay vào là ra

9 tháng 3 2020

b) ĐK: \(y\ne1\)

bpt <=> \(\frac{4\left(1-y\right)}{1-y^3}+\frac{1+y+y^2}{1-y^3}+\frac{2y^2-5}{1-y^3}\le0\)

<=> \(\frac{3y^2-3y}{1-y^3}\le0\)

\(\Leftrightarrow\frac{y\left(y-1\right)}{\left(y-1\right)\left(y^2+y+1\right)}\ge0\)

\(\Leftrightarrow\frac{y}{y^2+y+1}\ge0\)

vì \(y^2+y+1=\left(y+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

nên bpt <=> \(y\ge0\)

24 tháng 5 2021

Câu 1a : tự kết luận nhé 

\(2\left(x+3\right)=5x-4\Leftrightarrow2x+6=5x-4\Leftrightarrow-3x=-10\Leftrightarrow x=\frac{10}{3}\)

Câu 1b : \(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)ĐK : \(x\ne\pm3\)

\(\Leftrightarrow x+3-2x+6=5-2x\Leftrightarrow-x+9=5-2x\Leftrightarrow x=-4\)

c, \(\frac{x+1}{2}\ge\frac{2x-2}{3}\Leftrightarrow\frac{x+1}{2}-\frac{2x-2}{3}\ge0\)

\(\Leftrightarrow\frac{3x+3-4x+8}{6}\ge0\Rightarrow-x+11\ge0\Leftrightarrow x\le11\)vì 6 >= 0 

24 tháng 5 2021

1) 2(x + 3) = 5x - 4

<=> 2x + 6 = 5x - 4

<=> 3x = 10

<=> x = 10/3

Vậy x = 10/3 là nghiệm phương trình 

b) ĐKXĐ : \(x\ne\pm3\)

\(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)

=> \(\frac{x+3-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{5-2x}{\left(x-3\right)\left(x+3\right)}\)

=> x + 3 - 2(x - 3) = 5 - 2x

<=> -x + 9 = 5 - 2x

<=> x = -4 (tm) 

Vậy x = -4 là nghiệm phương trình 

c) \(\frac{x+1}{2}\ge\frac{2x-2}{3}\)

<=> \(6.\frac{x+1}{2}\ge6.\frac{2x-2}{3}\)

<=> 3(x + 1) \(\ge\)2(2x - 2)

<=> 3x + 3 \(\ge\)4x - 4

<=> 7 \(\ge\)x

<=> x \(\le7\)

Vậy x \(\le\)7 là nghiệm của bất phương trình 

Biểu diễn

-----------------------|-----------]|-/-/-/-/-/-/>

                           0             7