K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2016

Đặt \(t=x^2\) với điều kiện \(t\in R+\)


\(x^4+3x^2+\sqrt{x^2+1}<20\) \(\Rightarrow\) \(f\left(t\right):=t^2+3t^{ }+\sqrt{t^{ }+1}<20=f\left(3\right)\) 

Dễ thấy \(f\left(t\right)\) đồng biến trên R+

Do đó, kết hợp với điều kiện \(t\in R+\) ta có

\(f\left(t\right):=t^2+3t^{ }+\sqrt{t^{ }+1}<20=f\left(3\right)\) \(\Leftrightarrow\)  \(0\le t<3\)

Vì vậy,

\(x^4+3x^2+\sqrt{x^2+1}<20\) \(\Leftrightarrow\) \(0\le x^2<3\) \(\Leftrightarrow\) \(\left|x\right|<\sqrt{3}\)

Bất phương trình đã cho có nghiệm là \(-\sqrt{3}\)<x<\(\sqrt{3}\)

28 tháng 2 2021
Không làm mà đòi có an thì chỉ có an đầu
7 tháng 4 2017

a) <=>

<=>

<=> 6(3x + 1) - 4(x - 2) - 3(1 - 2x) < 0

<=> 20x + 11 < 0

<=> 20x < - 11

<=> x <

b) <=> 2x2 + 5x – 3 – 3x + 1 ≤ x2 + 2x – 3 + x2 - 5

<=> 0x ≤ -6.

Vô nghiệm.

8 tháng 4 2017

a) ĐKXĐ: D = {x ∈ R/x ≠ 0 và x + 1 ≠ 0} = R\{0;- 1}.

b) ĐKXĐ: D = {x ∈ R/x2 - 4 ≠ 0 và x2 - 4x + 3 ≠ 0} = R\{±2; 1; 3}.

c) ĐKXĐ: D = R\{- 1}.

d) ĐKXĐ: D = {x ∈ R/x + 4 ≠ 0 và 1 - x ≥ 0} = (-∞; - 4) ∪ (- 4; 1].

NV
7 tháng 2 2020

a/ \(x< -1\) BPT vô nghiêm

Với \(x\ge-1\):

\(\Leftrightarrow\left(x+1\right)^2>\left(2x-5\right)^2\)

\(\Leftrightarrow\left(x+1\right)^2-\left(2x-5\right)^2>0\)

\(\Leftrightarrow\left(3x-4\right)\left(6-x\right)>0\)

\(\Rightarrow\frac{4}{3}< x< 6\)

b/ Với \(x< -\frac{1}{2}\) BPT luôn đúng

Với \(x\ge-\frac{1}{2}\)

\(\Leftrightarrow\left(3x-2\right)^2\ge\left(2x+1\right)^2\)

\(\Leftrightarrow\left(3x-2\right)^2\ge\left(2x+1\right)^2\Leftrightarrow\left(5x-1\right)\left(x-3\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}x\ge3\\x\le\frac{1}{5}\end{matrix}\right.\)

Vậy nghiệm của BPT là \(\left[{}\begin{matrix}x\ge3\\x\le\frac{1}{5}\end{matrix}\right.\)

NV
8 tháng 2 2020

c/ ĐKXĐ: ...

Với \(x< -\frac{1}{2}\) BPT vô nghiệm

Với \(x\ge-\frac{1}{2}\)

\(\Leftrightarrow\left(2x+1\right)^2\ge2x^2+x\)

\(\Leftrightarrow2x^2+3x+1\ge0\Rightarrow\left[{}\begin{matrix}x\ge-\frac{1}{2}\\x\le-1\end{matrix}\right.\)

Kết hợp điều kiện ta được \(\left[{}\begin{matrix}x=-\frac{1}{2}\\x\ge0\end{matrix}\right.\)

d/ĐKXĐ: ...

\(x< 2\) BPT luôn đúng

Với \(x\ge2\):

\(\Leftrightarrow x^2-2x\ge\left(x-2\right)^2\)

\(\Leftrightarrow2x\ge4\Rightarrow x\ge2\)

Kết hợp ĐKXĐ ta có nghiệm của BPT là \(\left[{}\begin{matrix}x\le0\\x\ge2\end{matrix}\right.\)