Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1: \(x^2-4x-3\le0\Leftrightarrow2-\sqrt{7}\le x\le2+\sqrt{7}\)
bpt <=> \(-x^2+4x+3>-x^2+4x+3\) vô lí
TH2: \(x^2-4x-3>0\Leftrightarrow\orbr{\begin{cases}x>2+\sqrt{7}\\x< 2-\sqrt{7}\end{cases}}\)
bpt <=> \(x^2-4x-3>-x^2+4x+3\)
<=> \(x^2-4x-3>0\)
Đúng với \(\orbr{\begin{cases}x>2+\sqrt{7}\\x< 2-\sqrt{7}\end{cases}}\)
Vậy:...
a/ \(\Leftrightarrow\left(x^2+4x+3\right)^2>\left(x^2-4x-5\right)^2\)
\(\Leftrightarrow\left(x^2+4x+3\right)^2-\left(x^2-4x-5\right)^2>0\)
\(\Leftrightarrow\left(8x-8\right)\left(2x^2-2\right)>0\)
\(\Leftrightarrow\left(x+1\right)\left(x-1\right)^2>0\)
\(\Rightarrow\left\{{}\begin{matrix}x>-1\\x\ne1\end{matrix}\right.\)
b/ \(\left|x^2-3x+2\right|-x^2+2x>0\)
- Với \(1< x< 2\Rightarrow x^2-3x+2< 0\) BPT tương đương:
\(-x^2+3x-2-x^2+2x>0\)
\(\Leftrightarrow-2x^2+5x-2>0\Rightarrow\frac{1}{2}< x< 2\Rightarrow1< x< 2\)
- Với \(\left[{}\begin{matrix}x\ge2\\x\le1\end{matrix}\right.\) BPT tương đương:
\(x^2-3x+2-x^2+2x>0\)
\(\Leftrightarrow-x+2>0\Rightarrow x< 2\Rightarrow x\le1\)
Vậy nghiệm của BPT đã cho là \(x< 2\)
c: \(\Leftrightarrow\left\{{}\begin{matrix}4x+3>=0\\\left(x+2-4x-3\right)\left(x+2+4x+3\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{3}{4}\\\left(-3x-1\right)\left(5x+5\right)< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{3}{4}\\\left(3x+1\right)\left(x+1\right)>0\end{matrix}\right.\)
\(\Leftrightarrow x>-\dfrac{1}{3}\)
d: \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x-2< 0\\2x+1>=0\end{matrix}\right.\\\left\{{}\begin{matrix}3x-2>=0\\\left(2x+1-3x+2\right)\left(2x+1+3x-2\right)>=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{2}{3}\\x>-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x>=\dfrac{2}{3}\\\left(-x+3\right)\left(5x-1\right)>=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-\dfrac{1}{2}< x< \dfrac{2}{3}\\\left\{{}\begin{matrix}x>=\dfrac{2}{3}\\\left(x-3\right)\left(5x-1\right)< =0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{-1}{2}< x< \dfrac{2}{3}\\\dfrac{2}{3}< =x< =3\end{matrix}\right.\)
1. \(\Leftrightarrow\left(2x-1\right)\left(3x+1\right)< 0\)
\(\Rightarrow-\frac{1}{3}< x< \frac{1}{2}\)
2. \(\Leftrightarrow\left(x-2\right)\left(3-2x\right)>0\)
\(\Rightarrow\frac{3}{2}< x< 2\)
3. \(\Leftrightarrow\left(5x-3\right)^2>0\)
\(\Rightarrow x\ne\frac{3}{5}\)
4. \(\Leftrightarrow-3\left(x-\frac{1}{6}\right)-\frac{59}{12}< 0\)
\(\Rightarrow x\in R\)
5. \(\Leftrightarrow2\left(x-1\right)^2+5\ge0\)
\(\Rightarrow x\in R\)
6. \(\Leftrightarrow\left(x+2\right)\left(8x+7\right)\le0\)
\(\Rightarrow-2\le x\le-\frac{7}{8}\)
7.
\(\Leftrightarrow\left(x-1\right)^2+2>0\)
\(\Rightarrow x\in R\)
8. \(\Leftrightarrow\left(3x-2\right)\left(2x+1\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}x\le-\frac{1}{2}\\x\ge\frac{2}{3}\end{matrix}\right.\)
9. \(\Leftrightarrow\frac{1}{3}\left(x+3\right)\left(x+6\right)< 0\)
\(\Rightarrow-6< x< -3\)
10. \(\Leftrightarrow x^2-6x+9>0\)
\(\Leftrightarrow\left(x-3\right)^2>0\)
\(\Rightarrow x\ne3\)
Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\):
\(x^2+\frac{1}{x^2}-4\left(x+\frac{1}{x}\right)+5=0\)
Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\) pt trở thành:
\(t^2-2-4t+5=0\)
\(\Leftrightarrow t^2-4t+3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}=1\\x+\frac{1}{x}=3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-x+1=0\\x^2-3x+1=0\end{matrix}\right.\)
Đặt \(x^2-4x-3=t\)
\(\Leftrightarrow\left|t\right|>-t\Leftrightarrow t>0\)
\(\Leftrightarrow x^2-4x-3>0\Rightarrow\left[{}\begin{matrix}x< 2-\sqrt{7}\\x>2+\sqrt{7}\end{matrix}\right.\)