Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,A=2x-5 không âm hay 2x-5>0
=> 2x>5
=> x>5/2
Vậy gt của x là 5/2
b, x-8 >= 2.(x+1/2)+7
=> x-8>=2x+1+7
=> x-8>=2x+8
=> -x>=16
=> x=<-16
vậy bpt có tập nghiệm {xlx=<-16}
biểu diễn tập nghiệm trên trục số: (mk vẽ k đk ẹp) 0 -16
2x + 4 > 5x - 11
<=> 2x - 5x > -11 - 4
<=> -3x > -15
<=> -3x : ( -3 ) < -15 : ( -3 )
<=> x < 5
Vậy tập nghiệm của bất phương trình là x < 5
x + x - 1/2 > x - 2/3
<=> 2x - 1/2 > x - 2/3
<=> x > -1/6
x/3 + 3x - 4/5 >= 2x - 3
<=> 4x/3 >= -11/5
<=> 4x >= -33/5
<=> x >= -33/20
Tập nghiệm chung của 2 bất phương trình là : x >-1/6
\(a)x+3>5\\ \Leftrightarrow x>5-3\\ \Leftrightarrow x>2\)
Vậy bất phương trình có tập nghiệm là: \(S=\left\{x|x>2\right\}\)
Biểu diễn:
( 0 2
\(b)x+2\le3x+4\\ \Leftrightarrow x-3x\le4-2\\ \Leftrightarrow-2x\le2\\ \Leftrightarrow x\ge-1\)
Vậy bất phương trình có tập nghiệm là:\(S=\left\{x|x\ge-1\right\}\)
Biểu diễn:
[ -1 0
\(c)2x-7>8-x\\ \Leftrightarrow2x+x>8+7\\ \Leftrightarrow3x>15\\ \Leftrightarrow x>5\)
Vậy bất phương trình có tập nghiệm là:\(S\left\{x|x>5\right\}\)
Biểu diễn:
( 0 5
\(x^2-4x+3\ge0\)
\(\left(x-1\right)\left(x-3\right)\ge0\)
TH1; X-1>=0 VA X-3>=0
TH2: X-1=<0 VA X-3<=0
Vay x>=3 hoac x<=1
\(3x-1\le23\)
\(\Leftrightarrow3x-1+1\le23+1\)
\(\Leftrightarrow3x\le24\)
\(\Leftrightarrow x\le8\)
a,<=>3x<=24
<=>x<=8
Vậy ....
b, <=>4x-8>=9x-3-2x-1
<=>4x-9x+2x>=8-3-1
<=>-3x>=4
<=>x>=-4/3 Vậy ....
a:=>3x=15
=>x=5
b: =>8-11x<52
=>-11x<44
=>x>-4
c: \(VT=\left(\dfrac{x^2-\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\right)\cdot\dfrac{x\left(x+6\right)}{2x-6}+\dfrac{x}{6-x}\)
\(=\dfrac{12x-36}{2x-6}\cdot\dfrac{1}{x-6}-\dfrac{x}{x-6}=\dfrac{6}{x-6}-\dfrac{x}{x-6}=-1\)
\(x-8\ge2\left(\dfrac{x+1}{2}\right)+7\)
⇔\(x-8\ge x+1+7\)
⇔\(x-x\ge1+7+8\)
⇔\(0x\ge16\)(vô lí)
Tập nghiệm của bất phương trình là :
\(S=\left\{\varnothing\right\}\)
\(x-8\ge2\left(x+\dfrac{1}{2}\right)+7\)
\(\Leftrightarrow x-8\ge2x+1+7\)
\(\Leftrightarrow-x\ge16\Leftrightarrow x\le-16\)
tập nghiệm của phương trình: S={ x | x \(\le-16\) }
0 -16