K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2020

\(\sqrt{x^2+4x-5}\le x+3\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+4x-5\ge0\\x^2+4x-5\le\left(x+3\right)^2\\x+3\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\le-5\\x\ge1\end{matrix}\right.\\x\ge-7\\x\ge-3\end{matrix}\right.\)

Vậy \(S=[1;+\infty)\)

9 tháng 4 2020

really giải toán 10 ??

25 tháng 4 2018

điều kiện xác định: \(x^2+4x+3\ge0\Leftrightarrow\left(x+2\right)^2-1\ge0\)

\(\Rightarrow\left(x+2-1\right)\left(x+2+1\right)\ge0\Leftrightarrow\left(x+1\right)\left(x+3\right)\ge0\)

\(\Rightarrow-3\le x\le-1\)

Lời giải:

\(x^2+4x-3+5\sqrt{x^2+4x+3}>0\)

\(\Rightarrow x^2+4x+3+5\sqrt{x^2+4x+3}-6>0\)

Đặt: \(x^2+4x+3=a\) ta có:

\(bpt\Leftrightarrow a+5\sqrt{a}-6>0\)

\(\Rightarrow a+5\sqrt{a}+\dfrac{25}{4}-\dfrac{49}{4}>0\)

\(\Rightarrow\left(\sqrt{a}+\dfrac{5}{2}\right)^2-\dfrac{49}{4}>0\)

\(\Rightarrow\left(\sqrt{a}+\dfrac{5}{2}-\dfrac{7}{2}\right)\left(\sqrt{a}+\dfrac{5}{2}+\dfrac{7}{2}\right)>0\)

\(\Rightarrow\left(\sqrt{a}-1\right)\left(\sqrt{a}+6\right)>0\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{a}-1< 0\Leftrightarrow\sqrt{a}< 1\\\sqrt{a}+6< 0\Leftrightarrow\sqrt{a}< -6\end{matrix}\right.\Leftrightarrow\sqrt{a}< -6\) (loại)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{a}-1>0\Leftrightarrow\sqrt{a}>1\\\sqrt{a}+6>0\Leftrightarrow\sqrt{a}>-6\end{matrix}\right.\Leftrightarrow\sqrt{a}>1\Leftrightarrow a>1\)(chọn)

Sau khi tìm được \(a>1\) thì thay vào \(x^2+4x+3>1\) và giải tiếp,mk bận đi học rồi

25 tháng 4 2018

Hương-g Thảo-o Hình như chỗ đkxđ hơi nhầm đấy,xem lại nha,còn bài giải thì ok

13 tháng 2 2020

Mình nghĩ là thế này

Ta có: x2+1>0 ∀xϵR

x2+2x+3=(x+1)2+1>0 ∀xϵR

x2+4x+5=(x+2)2+1 >0 ∀xϵR

nên \(\sqrt{x^2+1}+2\sqrt{x^2+2x+3}\ge3\sqrt{x^2+4x+5}\)

\(\Leftrightarrow\sqrt{x^2+1}+2\sqrt{\left(x+1\right)^2+1}\ge3\sqrt{\left(x+2\right)^2+1}\)

\(\Leftrightarrow x+1+2\left(x+1\right)+2\ge3\left(x+2\right)+3\)

\(\Leftrightarrow x+3+2x+2\ge3x+6+3\)

\(\Leftrightarrow3x+5\ge3x+9\Leftrightarrow0x\ge4\) (vô nghiệm)

Vậy S=∅

NV
13 tháng 2 2020

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+1}=a>0\\\sqrt{x^2+2x+3}=b>0\end{matrix}\right.\)

\(a+2b\ge3\sqrt{2b^2-a^2}\)

\(\Leftrightarrow a^2+4b^2+4ab\ge18b^2-9a^2\)

\(\Leftrightarrow5a^2+2ab-7b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(5a+7b\right)\ge0\)

\(\Leftrightarrow a-b\ge0\) (do \(5a+7b>0\))

\(\Leftrightarrow a\ge b\Leftrightarrow\sqrt{x^2+1}\ge\sqrt{x^2+2x+3}\)

\(\Leftrightarrow x^2+1\ge x^2+2x+3\Leftrightarrow x\le-1\)

Vậy nghiệm của BPT là \(x\le-1\)

2 tháng 2 2020

\(ĐKXĐ:\hept{\begin{cases}x^2-8x+15\ge0\\x^2+2x-15\ge0\\4x^2-18x+18\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge5\\x\le-5\\x=3\end{cases}}\)

Với x = 8 thì (*) thỏa mãn \(\Rightarrow x=3\)là 1 nghiệm của bất phương trình.

\(\left(^∗\right)\Leftrightarrow\sqrt{\left(x-5\right)\left(x-3\right)}+\sqrt{\left(x+5\right)\left(x-3\right)}\le\sqrt{\left(x-3\right)\left(4x-6\right)}\)(1)

Với \(x\ge5\Rightarrow x-3\ge2>0\)hay \(x-3>0\)thì

\(\left(1\right)\Leftrightarrow\sqrt{x-5}+\sqrt{x+5}\le\sqrt{4x-6}\)\(\Leftrightarrow2x+2\sqrt{x^2-25}\le4x-6\)

\(\Leftrightarrow\sqrt{x^2-25}\le x-3\Leftrightarrow x^2-25=x^2-6x+9\Leftrightarrow x\le\frac{17}{3}\)

\(\Rightarrow5\le x\le\frac{17}{3}\)

Với \(x\le-5\Leftrightarrow-x\ge5\Leftrightarrow3-x\ge8>0\)hay \(x\le-5\Leftrightarrow-x\ge5\Leftrightarrow3-x>0\)thì

\(\left(1\right)\Leftrightarrow\sqrt{\left(5-x\right)\left(3-x\right)}+\sqrt{\left(-5-x\right)\left(3-x\right)}\)

\(\le\sqrt{\left(3-x\right)\left(4-6x\right)}\)

\(\Leftrightarrow\sqrt{5-x}+\sqrt{-x-5}\le\sqrt{6-4x}\)

\(\Leftrightarrow-2x+2\sqrt{\left(5-x\right)\left(-x-5\right)}\le6-4x\)

\(\Leftrightarrow\sqrt{x^2-25}\le3-x\Leftrightarrow x^2-25\le x^2-6x+9\)

\(\Leftrightarrow x\le\frac{17}{3}\Rightarrow x\le-5\)

Từ đó suy ra tập nghiệm của bpt là \(x\in(-\infty;-5]\mu\left\{3\right\}\mu\left[5;\frac{17}{3}\right]\)

NV
25 tháng 4 2019

ĐKXĐ: \(x\ge\frac{2}{3}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{4x+1}=a>0\\\sqrt{3x-2}=b\ge0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=x+3\)

Phương trình trở thành:

\(a-b=\frac{a^2-b^2}{5}\)

\(\Leftrightarrow\left(a-b\right)\left(a+b\right)-5\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(a+b-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=b\\a+b=5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{4x+1}=\sqrt{3x-2}\left(1\right)\\\sqrt{4x+1}+\sqrt{3x-2}=5\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow4x+1=3x-2\Rightarrow x=-3< \frac{2}{3}\left(l\right)\)

\(\left(2\right)\Leftrightarrow4x+1+3x-2+2\sqrt{\left(4x+1\right)\left(3x-2\right)}=25\)

\(\Leftrightarrow2\sqrt{\left(4x+1\right)\left(3x-2\right)}=26-7x\) (\(\frac{2}{3}\le x\le\frac{26}{7}\))

\(\Leftrightarrow4\left(4x+1\right)\left(3x-2\right)=\left(26-7x\right)^2\)

\(\Leftrightarrow...\)

8 tháng 10 2020

đk: \(\hept{\begin{cases}x^2-2x+5\ge0\\4x+5\ge0\end{cases}}\Leftrightarrow x\ge\frac{-5}{4}\)

Ta có: \(x^3-2x^2-\sqrt{x^2-2x+5}=2\sqrt{4x+5}-5x-4\)

\(\Leftrightarrow3x^3-6x^2+15x+12-3\sqrt{x^2-2x+5}-6\sqrt{4x+5}=0\)

\(\Leftrightarrow3\left(x+1-\sqrt{x^2-2x+5}\right)+2\sqrt{4x+5}\left(\sqrt{4x+5}-3\right)+3x^3-6x^2+4x-1=0\)

\(\Leftrightarrow\frac{12\left(x-1\right)}{x+1+\sqrt{x^2-2x+5}}+\frac{8\left(x-1\right)\sqrt{4x+5}}{\sqrt{4x+5}+3}+\left(x-1\right)\left(3x^2-3x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{12}{x+1+\sqrt{x^2-2x+5}}+\frac{8\sqrt{4x+5}}{\sqrt{4x+5}+3}+3x^2-3x+1\right)=0\Leftrightarrow x=1\)

14 tháng 6 2020

\(x^2-4x+2\sqrt{x^2-4x-5}< 8\)

Đặt \(\sqrt{x^2-4x-5}=t,\left(t\ge0\right)\)

\(\Leftrightarrow x^2-4x-5=t^2\)

Ta có: \(t^2+2t-3< 0\Leftrightarrow-3< t< 1\)

TH1: \(t>-3\) thì bpt trở thành:

\(x^2-4x-5>-3\Leftrightarrow\left[{}\begin{matrix}x< 2-\sqrt{6}\\x>2+\sqrt{6}\end{matrix}\right.\)

\(\Rightarrow S=\left(-\infty;2-\sqrt{6}\right)\cup\left(2+\sqrt{6};+\infty\right)\)

TH2: \(t< 1\) thì bpt trở thành

\(x^2-4x-5< 1\Leftrightarrow2-\sqrt{10}< x< 2+\sqrt{10}\)

\(\Rightarrow S=\left(2-\sqrt{10};2+\sqrt{10}\right)\)

NV
14 tháng 6 2020

ĐKXĐ: \(x^2-4x-5\ge0\Rightarrow\left[{}\begin{matrix}x\ge5\\x\le-1\end{matrix}\right.\)

Đặt \(\sqrt{x^2-4x-5}=t\ge0\) BPT trở thành:

\(t^2+5+2t< 8\Leftrightarrow t^2+2t-3< 0\)

\(\Leftrightarrow\left(t-1\right)\left(t+3\right)< 0\Leftrightarrow t-1< 0\)

\(\Rightarrow t< 1\Rightarrow\sqrt{x^2-4x-5}< 1\)

\(\Leftrightarrow x^2-4x-6< 0\Rightarrow2-\sqrt{10}< t< 2+\sqrt{10}\)

Kết hợp ĐKXĐ ta được nghiệm BPT: \(\left[{}\begin{matrix}2-\sqrt{10}< t\le-1\\5\le t< 2+\sqrt{10}\end{matrix}\right.\)

NV
16 tháng 4 2022

a.

\(3\sqrt{-x^2+x+6}\ge2\left(1-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-x^2+x+6\ge0\\1-2x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}1-2x\ge0\\9\left(-x^2+x+6\right)\ge4\left(1-2x\right)^2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-2\le x\le3\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\25\left(x^2-x-2\right)\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}< x\le3\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\-1\le x\le2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow-1\le x\le3\)

NV
16 tháng 4 2022

b.

ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)

\(\Leftrightarrow\dfrac{2x^2+8x+5-16x}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-4x+5-4x}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\dfrac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\dfrac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-8x+5=0\)

\(\Leftrightarrow x=\dfrac{4\pm\sqrt{6}}{2}\)