Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x^2+5x+4}\ge2x+2\) (ĐKXĐ: \(x\ge-1\))
\(\Leftrightarrow x^2+5x+4=4x^2+8x+4\)
\(\Leftrightarrow-3x^2-3x=0\)
\(\Leftrightarrow-3x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-3x=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\) (TMĐK)
Vậy \(S=\left\{0;-1\right\}\)
\(x\ge9\Rightarrow x+9\ge18\Rightarrow\sqrt{x+9}\ge3\sqrt{2}\)
nguyễn thị thanh huyền
b/ ĐKXĐ: \(\left[{}\begin{matrix}x\ge-\frac{2}{3}\\x\le-1\end{matrix}\right.\)
Đặt \(3x^2+5x+2=t\ge0\)
\(\Leftrightarrow\sqrt{t+5}-\sqrt{t}>1\)
\(\Leftrightarrow\sqrt{t+5}>\sqrt{t}+1\)
\(\Leftrightarrow t+5>t+1+2\sqrt{t}\)
\(\Leftrightarrow\sqrt{t}< 2\Rightarrow t< 4\)
\(\Rightarrow3x^2+5x+2< 4\)
\(\Leftrightarrow3x^2+5x-2< 0\) \(\Rightarrow-2< x< \frac{1}{3}\)
Kết hợp ĐKXĐ ta được nghiệm của BPT:
\(\left[{}\begin{matrix}-2< x\le-1\\-\frac{2}{3}\le x< \frac{1}{3}\end{matrix}\right.\)
a/ \(x< -1\) BPT vô nghiêm
Với \(x\ge-1\):
\(\Leftrightarrow\left(x+1\right)^2>\left(2x-5\right)^2\)
\(\Leftrightarrow\left(x+1\right)^2-\left(2x-5\right)^2>0\)
\(\Leftrightarrow\left(3x-4\right)\left(6-x\right)>0\)
\(\Rightarrow\frac{4}{3}< x< 6\)
b/ Với \(x< -\frac{1}{2}\) BPT luôn đúng
Với \(x\ge-\frac{1}{2}\)
\(\Leftrightarrow\left(3x-2\right)^2\ge\left(2x+1\right)^2\)
\(\Leftrightarrow\left(3x-2\right)^2\ge\left(2x+1\right)^2\Leftrightarrow\left(5x-1\right)\left(x-3\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}x\ge3\\x\le\frac{1}{5}\end{matrix}\right.\)
Vậy nghiệm của BPT là \(\left[{}\begin{matrix}x\ge3\\x\le\frac{1}{5}\end{matrix}\right.\)
c/ ĐKXĐ: ...
Với \(x< -\frac{1}{2}\) BPT vô nghiệm
Với \(x\ge-\frac{1}{2}\)
\(\Leftrightarrow\left(2x+1\right)^2\ge2x^2+x\)
\(\Leftrightarrow2x^2+3x+1\ge0\Rightarrow\left[{}\begin{matrix}x\ge-\frac{1}{2}\\x\le-1\end{matrix}\right.\)
Kết hợp điều kiện ta được \(\left[{}\begin{matrix}x=-\frac{1}{2}\\x\ge0\end{matrix}\right.\)
d/ĐKXĐ: ...
\(x< 2\) BPT luôn đúng
Với \(x\ge2\):
\(\Leftrightarrow x^2-2x\ge\left(x-2\right)^2\)
\(\Leftrightarrow2x\ge4\Rightarrow x\ge2\)
Kết hợp ĐKXĐ ta có nghiệm của BPT là \(\left[{}\begin{matrix}x\le0\\x\ge2\end{matrix}\right.\)
ĐKXĐ: \(x\ge\dfrac{1}{5}\)
\(\Leftrightarrow2x^2+x-3+2x-\sqrt{5x-1}+\sqrt[3]{x-9}+2\le0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)+\dfrac{4x^2-5x+1}{2x+\sqrt{5x-1}}+\dfrac{x-1}{\sqrt[3]{\left(x-9\right)^2}-2\sqrt[3]{x-9}+4}\le0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3+\dfrac{4x-1}{2x+\sqrt{5x-1}}+\dfrac{1}{\sqrt[3]{\left(x-9\right)^2}-2\sqrt[3]{x-9}+4}\right)\le0\)
\(\Leftrightarrow x-1\le0\)
\(\Rightarrow\dfrac{1}{5}\le x\le1\)