K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 1 2021

ĐKXĐ: \(x\ge\dfrac{1}{5}\)

\(\Leftrightarrow2x^2+x-3+2x-\sqrt{5x-1}+\sqrt[3]{x-9}+2\le0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)+\dfrac{4x^2-5x+1}{2x+\sqrt{5x-1}}+\dfrac{x-1}{\sqrt[3]{\left(x-9\right)^2}-2\sqrt[3]{x-9}+4}\le0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+3+\dfrac{4x-1}{2x+\sqrt{5x-1}}+\dfrac{1}{\sqrt[3]{\left(x-9\right)^2}-2\sqrt[3]{x-9}+4}\right)\le0\)

\(\Leftrightarrow x-1\le0\)

\(\Rightarrow\dfrac{1}{5}\le x\le1\)

27 tháng 2 2021
Tự giải . ko làm mà đòi có ăn thì chỉ ăn cái đó
28 tháng 2 2021
Không làm mà đòi có an thì chỉ có an đầu
30 tháng 1 2022

\(\sqrt{x^2+5x+4}\ge2x+2\) (ĐKXĐ: \(x\ge-1\))

\(\Leftrightarrow x^2+5x+4=4x^2+8x+4\)

\(\Leftrightarrow-3x^2-3x=0\)

\(\Leftrightarrow-3x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-3x=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\) (TMĐK)

Vậy \(S=\left\{0;-1\right\}\)

29 tháng 1 2022

https://meet.google.com/ais-xuwi-vhc

NV
13 tháng 4 2020

\(x\ge9\Rightarrow x+9\ge18\Rightarrow\sqrt{x+9}\ge3\sqrt{2}\)

nguyễn thị thanh huyền

NV
13 tháng 4 2020

b/ ĐKXĐ: \(\left[{}\begin{matrix}x\ge-\frac{2}{3}\\x\le-1\end{matrix}\right.\)

Đặt \(3x^2+5x+2=t\ge0\)

\(\Leftrightarrow\sqrt{t+5}-\sqrt{t}>1\)

\(\Leftrightarrow\sqrt{t+5}>\sqrt{t}+1\)

\(\Leftrightarrow t+5>t+1+2\sqrt{t}\)

\(\Leftrightarrow\sqrt{t}< 2\Rightarrow t< 4\)

\(\Rightarrow3x^2+5x+2< 4\)

\(\Leftrightarrow3x^2+5x-2< 0\) \(\Rightarrow-2< x< \frac{1}{3}\)

Kết hợp ĐKXĐ ta được nghiệm của BPT:

\(\left[{}\begin{matrix}-2< x\le-1\\-\frac{2}{3}\le x< \frac{1}{3}\end{matrix}\right.\)

NV
7 tháng 2 2020

a/ \(x< -1\) BPT vô nghiêm

Với \(x\ge-1\):

\(\Leftrightarrow\left(x+1\right)^2>\left(2x-5\right)^2\)

\(\Leftrightarrow\left(x+1\right)^2-\left(2x-5\right)^2>0\)

\(\Leftrightarrow\left(3x-4\right)\left(6-x\right)>0\)

\(\Rightarrow\frac{4}{3}< x< 6\)

b/ Với \(x< -\frac{1}{2}\) BPT luôn đúng

Với \(x\ge-\frac{1}{2}\)

\(\Leftrightarrow\left(3x-2\right)^2\ge\left(2x+1\right)^2\)

\(\Leftrightarrow\left(3x-2\right)^2\ge\left(2x+1\right)^2\Leftrightarrow\left(5x-1\right)\left(x-3\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}x\ge3\\x\le\frac{1}{5}\end{matrix}\right.\)

Vậy nghiệm của BPT là \(\left[{}\begin{matrix}x\ge3\\x\le\frac{1}{5}\end{matrix}\right.\)

NV
8 tháng 2 2020

c/ ĐKXĐ: ...

Với \(x< -\frac{1}{2}\) BPT vô nghiệm

Với \(x\ge-\frac{1}{2}\)

\(\Leftrightarrow\left(2x+1\right)^2\ge2x^2+x\)

\(\Leftrightarrow2x^2+3x+1\ge0\Rightarrow\left[{}\begin{matrix}x\ge-\frac{1}{2}\\x\le-1\end{matrix}\right.\)

Kết hợp điều kiện ta được \(\left[{}\begin{matrix}x=-\frac{1}{2}\\x\ge0\end{matrix}\right.\)

d/ĐKXĐ: ...

\(x< 2\) BPT luôn đúng

Với \(x\ge2\):

\(\Leftrightarrow x^2-2x\ge\left(x-2\right)^2\)

\(\Leftrightarrow2x\ge4\Rightarrow x\ge2\)

Kết hợp ĐKXĐ ta có nghiệm của BPT là \(\left[{}\begin{matrix}x\le0\\x\ge2\end{matrix}\right.\)

4 tháng 12 2016

Bạn dùng liên hợp là ra mà