Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Xét-mẫu-của-biểu-thức:\left(đk:x\ge1\right).ta-có:x-\sqrt{2\left(x^2+5\right)}=\frac{-\left(x^2+10\right)}{x+\sqrt{2\left(x^2+5\right)}}< 0\\
.\)Vậy nó luôn <0 với đk x>=1
\(Xét-tử:đặt-nó-bằng-A=\left(x-2\right)^2-\left(\sqrt{x-1}-1\right)^2\left(2x-1\right)=2\sqrt{x-1}\left(2x-1\right)-\left(x-1\right)\left(x+4\right)\\ =\sqrt{x-1}\left(2\left(2x-1\right)-\sqrt{x-1\left(x+4\right)}\right)\ge0.\\ \)\(=>\left(2\left(2x-1\right)-\sqrt{\left(x-1\right)}\left(x+4\right)\right)\ge0< =>\frac{\left(5-x\right)\left(x-2\right)^2}{2\left(2x-1\right)+\left(x-1\right)\left(x+4\right)}\ge0< =>x\le5\) Vậy . \(1\le x\le5\)
Câu a :
\(x-5\sqrt{x}-14=0\)
\(\Leftrightarrow\left(\sqrt{x}+2\right)\left(\sqrt{x}-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+2=0\\\sqrt{x}-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\in\varnothing\\x=49\end{matrix}\right.\)
Vậy \(S=\left\{49\right\}\)
Câu b :
\(\left(x^2+x+1\right)\left(x^2+x+2\right)=2\)
Đặt \(x^2+x+1=t\)
\(\Leftrightarrow t\left(t+1\right)=2\)
\(\Leftrightarrow t^2+t-2=0\)
\(\Leftrightarrow\left(t-1\right)\left(t+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t-1=0\\t+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-2\end{matrix}\right.\)
Với \(t=1\) thì :
\(x^2+x+1=1\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Với \(t=-2\) thì :
\(x^2+x+1=-2\)
\(\Leftrightarrow x^2+x+3=0\) ( pt vô nghiệm )
Vậy \(S=\left\{-1;0\right\}\)
a) + 2 = x(1 - x)
⇔ x2 – 9 + 6 = 3x – 3x2
⇔ 4x2 – 3x – 3 = 0; ∆ = 57
x1 = , x2 =
b) + 3 = . Điều kiện x ≠ 2, x ≠ 5.
(x + 2)(2 – x) + 3(x – 5)(2 – x) = 6(x – 5)
⇔ 4 – x2 – 3x2 + 21x – 30 = 6x – 30 ⇔ 4x2 – 15x – 4 = 0
∆ = 225 + 64 = 289, √∆ = 17
x1 = , x2 = 4
c) = . Điều kiện: x ≠ -1; x ≠ -2
Phương trình tương đương: 4(x + 2) = -x2 – x + 2
⇔ 4x + 8 = 2 – x2 – x
⇔ x2 + 5x + 6 = 0
Giải ra ta được: x1 = -2 không thỏa mãn điều kiện của ẩn nên phương trình chỉ có một nghiệm x = -3.
a) + 2 = x(1 - x)
⇔ x2 – 9 + 6 = 3x – 3x2
⇔ 4x2 – 3x – 3 = 0; ∆ = 57
x1 = , x2 =
b) + 3 = . Điều kiện x ≠ 2, x ≠ 5.
(x + 2)(2 – x) + 3(x – 5)(2 – x) = 6(x – 5)
⇔ 4 – x2 – 3x2 + 21x – 30 = 6x – 30 ⇔ 4x2 – 15x – 4 = 0
∆ = 225 + 64 = 289, √∆ = 17
x1 = , x2 = 4
c) = . Điều kiện: x ≠ -1; x ≠ -2
Phương trình tương đương: 4(x + 2) = -x2 – x + 2
⇔ 4x + 8 = 2 – x2 – x
⇔ x2 + 5x + 6 = 0
Giải ra ta được: x1 = -2 không thỏa mãn điều kiện của ẩn nên phương trình chỉ có một nghiệm x = -3.
nhớ like nha
a, Đặt \(x^2-2x=t\)
Phương trình đã cho trở thành:
\(2t^2+3t+1=0\)
Có a-b+c = 2-3+1 = 0
=> Phương trình có 2 nghiệm: \(t_1=-1;t_2=-\dfrac{1}{2}\)
Với t= -1 ta có \(x^2-2x=-1\)
\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x=1\)
Với t= -1/2 ta có \(x^2-2x=-\dfrac{1}{2}\)
\(\Leftrightarrow2x^2-4x+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2+\sqrt{2}}{2}\\x=\dfrac{2-\sqrt{2}}{2}\end{matrix}\right.\)
Vậy tập nghiệm của pt đã cho là \(S=\left\{1;\dfrac{2+\sqrt{2}}{2};\dfrac{2-\sqrt{2}}{2}\right\}\)
b, ĐK: x khác 0
Đặt \(x+\dfrac{1}{x}=t\)
Phương trình đã cho trở thành: \(t^2-4t+3=0\)
Có a+b+c=1-4+3=0
=> Phương trình có 2 nghiệm \(t_1=1;t_2=3\)
• Với t=1 ta có \(x+\dfrac{1}{x}=1\)
\(\Leftrightarrow x^2-x+1=0\)
Vì \(\Delta=1^2-4.1=-3< 0\) nên pt vô nghiệm
• Với t=3 ta có \(x+\dfrac{1}{x}=3\)
\(\Leftrightarrow x^2-3x+1=0\)
\(\Leftrightarrow x=\dfrac{3\pm\sqrt{5}}{2}\) (TMĐK)
Vậy tập nghiệm của pt đã cho là \(S=\left\{\dfrac{3+\sqrt{5}}{2};\dfrac{3-\sqrt{5}}{2}\right\}\)
a) (3x2 - 7x – 10)[2x2 + (1 - √5)x + √5 – 3] = 0
=> hoặc (3x2 - 7x – 10) = 0 (1)
hoặc 2x2 + (1 - √5)x + √5 – 3 = 0 (2)
Giải (1): phương trình a - b + c = 3 + 7 - 10 = 0
nên
x1 = - 1, x2 = =
Giải (2): phương trình có a + b + c = 2 + (1 - √5) + √5 - 3 = 0
nên
x3 = 1, x4 =
b) x3 + 3x2– 2x – 6 = 0 ⇔ x2(x + 3) – 2(x + 3) = 0 ⇔ (x + 3)(x2 - 2) = 0
=> hoặc x + 3 = 0
hoặc x2 - 2 = 0
Giải ra x1 = -3, x2 = -√2, x3 = √2
c) (x2 - 1)(0,6x + 1) = 0,6x2 + x ⇔ (0,6x + 1)(x2 – x – 1) = 0
=> hoặc 0,6x + 1 = 0 (1)
hoặc x2 – x – 1 = 0 (2)
(1) ⇔ 0,6x + 1 = 0
⇔ x2 = =
(2): ∆ = (-1)2 – 4 . 1 . (-1) = 1 + 4 = 5, √∆ = √5
x3 = , x4 =
Vậy phương trình có ba nghiệm:
x1 = , x2 = , x3 = ,
d) (x2 + 2x – 5)2 = ( x2 – x + 5)2 ⇔ (x2 + 2x – 5)2 - ( x2 – x + 5)2 = 0
⇔ (x2 + 2x – 5 + x2 – x + 5)( x2 + 2x – 5 - x2 + x - 5) = 0
⇔ (2x2 + x)(3x – 10) = 0
⇔ x(2x + 1)(3x – 10) = 0
Hoặc x = 0, x = , x =
Vậy phương trình có 3 nghiệm:
x1 = 0, x2 = , x3 =
ĐKXĐ : \(\hept{\begin{cases}x\ne3\\x\ne-2\end{cases}}\)
<=> \(\frac{x^2-3x+5}{\left(x-3\right)\left(x+2\right)}-\frac{x+2}{\left(x-3\right)\left(x+2\right)}=0\)
<=> \(\frac{x^2-4x+3}{\left(x-3\right)\left(x+2\right)}=0\)
=> x2 - 4x + 3 = 0
Δ' = b'2 - ac = (-2)2 - 3 = 1
Δ' > 0, áp dụng công thức nghiệm thu được x1 = 3 (ktm) ; x2 = 1 (tm)
Vậy pt có nghiệm x = 1
a/ \(\left(x+3\right)\left(3\left(x^2+1\right)^2+2\left(x+3\right)^2\right)=5\left(x^2+1\right)^3\)
\(\Leftrightarrow3\left(x+3\right)\left(x^2+1\right)^2+2\left(x+3\right)^3-5\left(x^2+1\right)^3=0\)
\(\Leftrightarrow3\left(x+3\right)\left(x^2+1\right)^2-3\left(x^2+1\right)^3+2\left(x+3\right)^3-2\left(x^2+1\right)^3=0\)
\(\Leftrightarrow3\left(x^2+1\right)^2\left(-x^2+x+2\right)+2\left(-x^2+x+2\right)\left(\left(x+3\right)^2+\left(x+3\right)\left(x^2+1\right)+\left(x^2+1\right)^2\right)=0\)
\(\Leftrightarrow\left(-x^2+x+2\right)\left[3\left(x^2+1\right)^2+2\left(x+3+\dfrac{x^2+1}{2}\right)^2+\dfrac{3\left(x^2+1\right)^2}{4}\right]=0\)
\(\Leftrightarrow-x^2+x+2=0\) (phần ngoặc phía sau luôn dương)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
b/ \(3\left(x^2+2x-1\right)^2-2\left(x^2+3x-1\right)^2+5\left(x^2+3x-1-\left(x^2+2x-1\right)\right)^2=0\)
Đặt \(\left\{{}\begin{matrix}a=x^2+2x-1\\b=x^2+3x-1\end{matrix}\right.\)
\(3a^2-2b^2+5\left(b-a\right)^2=0\Leftrightarrow8a^2+3b^2-10ab=0\)
\(\Leftrightarrow\left(4a-3b\right)\left(2a-b\right)=0\Leftrightarrow\left[{}\begin{matrix}4a=3b\\2a=b\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4\left(x^2+2x-1\right)=3\left(x^2+3x-1\right)\\2\left(x^2+2x-1\right)=x^2+3x-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\\x^2+x-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{5}}{2}\\x=\dfrac{1-\sqrt{5}}{2}\\x=\dfrac{-1+\sqrt{5}}{2}\\x=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)
\(\dfrac{\left(x-3\right)\left(x+5\right)}{\left(x-2\right)^2}< 0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-3\right)\left(x+5\right)< 0\\x\ne2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-5< x< 3\\x\ne2\end{matrix}\right.\)