Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện xác định :\(x\ne-1\)
Ta có : \(\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)=1\Rightarrow\left(2-\sqrt{3}\right)=\left(2+\sqrt{3}\right)^{-1}\)
\(\Rightarrow\) Bất phương trình : \(\left(2+\sqrt{3}\right)^{x-1}\ge\left(2+\sqrt{3}\right)^{\frac{1-x}{x+1}}\)
\(\Leftrightarrow x-1\ge\frac{1-x}{x+1}\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x+2\right)}{x+1}\ge0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}-2\le x< -1\\x\ge1\end{array}\right.\)
Vậy bất phương trình có tập nghiệm là \(S=\)[ -2; -1) \(\cup\) [1; \(+\infty\))
Điều kiện xác định : \(x\ge1+\sqrt{3}\)
Với điều kiện đó, bất phương trình trở thành : \(x^2+2x-2+2\sqrt{x\left(x+1\right)\left(x-2\right)}\ge3\left(x^2-2x-2\right)\left(2\right)\)
\(\Leftrightarrow\sqrt{x\left(x-2\right)\left(x+1\right)}\ge x\left(x-2\right)-2\left(x+1\right)\)
\(\Leftrightarrow\left(\sqrt{x\left(x-2\right)}-2\sqrt{x+1}\right)\left(\sqrt{x\left(x-2\right)}+\sqrt{x+1}\right)\le0\) (3)
Do với mọi x thỏa mãn (1) , ta có \(\sqrt{x\left(x-2\right)}+\sqrt{x+1}>0\) nên
(3) \(\Leftrightarrow\sqrt{x\left(x-2\right)}\le2\sqrt{x+1}\)
\(\Leftrightarrow x^2-6x-4\le0\)
\(\Leftrightarrow3-\sqrt{13}\le x\le3+\sqrt{13}\) (4)
Kết hợp (1) và (4) ta được tập nghiệm của bất phương trình đã cho là :
\(\left[1+\sqrt{3};3+\sqrt{13}\right]\)
Điều kiện \(x^2-2x\ge0\Leftrightarrow\left[\begin{array}{nghiempt}x\ge2\\x\le0\end{array}\right.\) khi đó :
Bất phương trình \(\Leftrightarrow3^{\sqrt{x^2-2x}}\ge\left(3\right)^{\sqrt{\left(x-1\right)^2}-x}\Leftrightarrow\sqrt{x^2-2x}\ge\left|x-1\right|-x\)
- Khi \(x\ge2\Rightarrow x-1>0\) nên bất phương trình \(\sqrt{x^2-2x}\ge-1\) đúng với mọi \(x\ge2\)
- Khi \(x\le0\Rightarrow x-1< 0\) nên bất phương trình \(\sqrt{x^2-2x}\ge1-2x\)
\(\Leftrightarrow\begin{cases}x^2-2x\ge1-4x+4x^2\\x\le0\end{cases}\) vô nghiệm
Vậy tập nghiệm của bất phương trình là : S = [2;\(+\infty\) )
ĐKXĐ: ...
\(\Leftrightarrow\left(x-4\right)\left(x^2-3x-3\right)=\left(x-3\right)\left(x-2+5\sqrt{x-3}\right).\frac{\left(x-4\right)}{\sqrt{x-3}+1}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x^2-3x-3=\frac{\left(x-3\right)\left(x-2+5\sqrt{x-3}\right)}{\sqrt{x-3}+1}\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left(x^2-3x-3\right)\sqrt{x-3}+x^2-3x-3=x^2-5x+6+\left(5x-15\right)\sqrt{x-3}\)
\(\Leftrightarrow\left(x^2-8x+12\right)\sqrt{x-3}+2x-9=0\)
\(\Leftrightarrow\left(x^2-8x+12\right)\left(\sqrt{x-3}-x+4\right)+x^3-12x^2+46x-57=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-9x+19\right)-\frac{\left(x^2-8x+12\right)\left(x^2-9x+19\right)}{\sqrt{x-3}+x-4}=0\)
\(\Leftrightarrow\left(x^2-9x+19\right)\left(x-3-\frac{x^2-8x+12}{\sqrt{x-3}+x-4}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-9x+19=0\Rightarrow x=...\\x-3=\frac{x^2-8x+12}{\sqrt{x-3}+x-4}\left(2\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow\left(x-3\right)\sqrt{x-3}+x^2-7x+12=x^2-8x+12\)
\(\Leftrightarrow\left(x-3\right)\sqrt{x-3}=-x\) (vô nghiệm do \(x\ge3\) nên vế trái không âm, vế phải luôn âm)
Câu 2:
Đối với BPT \(\left|x-1\right|\sqrt{x+3}>\left|x-1\right|\)
Nếu x=1 thì BPT vô nghiệm
Nếu x<>1 thì BPT sẽ tương đương với \(\sqrt{x+3}>\dfrac{\left|x-1\right|}{\left|x-1\right|}=1\)
Do đó: Nếu muốn hai BPT tương đương thì x<>1
lời giải
a)
\(\left(x+1\right)\left(2x-1\right)+x\le2x^2+3\)
\(\Leftrightarrow2x^2+x-1+x\le2x^2+3\)
\(\Leftrightarrow2x\le4\Rightarrow x\le2\)
\(\)b) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)-x>x^3+6x^2-5\)
\(\left(x^2+3x+2\right)\left(x+3\right)-x>x^3+6x^2-5\)
\(x^3+3x^2+3x^2+9x+2x+6-x>x^3+6x^2-5\)
\(10x+6>-5\Rightarrow x>-\dfrac{11}{10}\)
c)Đkxđ: x≥0
x+√x>(2√x+3)(√x−1)
⇔x+√x>2x+√x−3
⇔x−3>0
⇔x>3. (tmđk).