Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(4\sqrt{x}+\frac{2}{\sqrt{x}}< 2x+\frac{1}{2x}+2\)
hay \(2\sqrt{x}+\frac{1}{\sqrt{x}}< x+\frac{1}{4x}+1\)
\(\Leftrightarrow0< x+\frac{1}{4x}+1-2\sqrt{x}-\frac{1}{\sqrt{x}}\)
\(\Leftrightarrow0< \left(\sqrt{x}\right)^2-2\sqrt{x}-2\sqrt{x}\cdot1+1+\frac{1}{\left(2\sqrt{x}\right)^2}-2\cdot\frac{1}{2\sqrt{x}}\)
\(\Leftrightarrow1< \left(\sqrt{x}-1\right)^2+\left(\frac{1}{2\sqrt{x}}-1\right)^2\)
\(\Rightarrow\hept{\begin{cases}x>0\\\sqrt{x}>1\\2\sqrt{x}>1\end{cases}\Rightarrow\hept{\begin{cases}x>1\\x>\frac{1}{4}\end{cases}\Rightarrow}x>1}\)
b) \(\frac{1}{1-x^2}>\frac{3}{\sqrt{1-x^2}}-1\left(1\right)\left(ĐK:-1< x< 1\right)\)
Ta có (1) <=> \(\frac{1}{1-x^2}-1-\frac{3x}{\sqrt{1-x^2}}+2>0\)\(\Leftrightarrow\frac{x^2}{1-x^2}-\frac{3x}{\sqrt{1-x^2}}+2>0\)
Đặt \(t=\frac{x}{\sqrt{1-x^2}}\)ta được
\(t^2-3t+2>0\Leftrightarrow\orbr{\begin{cases}\frac{x}{\sqrt{1-x^2}}< 1\\\frac{x}{\sqrt{1-x^2}}>2\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{1-x^2}>x\left(a\right)\\2\sqrt{1-x^2}< x\left(b\right)\end{cases}}}\)
(a) <=> \(\hept{\begin{cases}x< 0\\1-x^2>0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\1-x^2>x^2\end{cases}}}\)
\(\Leftrightarrow-1< x< 0\)hoặc \(\hept{\begin{cases}x\ge0\\x^2< \frac{1}{2}\end{cases}}\)
\(\Leftrightarrow-1< x< 0\)hoặc \(0\le x\le\frac{\sqrt{2}}{2}\Leftrightarrow-1< x< \frac{\sqrt{2}}{2}\)
(b) \(\Leftrightarrow\hept{\begin{cases}1-x^2>0\\x>0\\4\left(1-x^2\right)< x^2\end{cases}\Leftrightarrow\hept{\begin{cases}0< x< 1\\x^2>\frac{4}{5}\end{cases}\Leftrightarrow}\frac{2}{\sqrt{5}}< x< 1}\)
a) \(4x^2-x+1< 0\)
Tam thức f(x) = 4x2 - x + 1 có hệ số a = 4 > 0 biệt thức ∆ = 12 – 4.4 < 0. Do đó f(x) > 0 ∀x ∈ R.
Bất phương trình 4x2 - x + 1 < 0 vô nghiệm.
b) f(x) = - 3x2 + x + 4 = 0
\(\Delta=1^2-4\left(-3\right).4=49\)
\(x_1=\dfrac{-1+\sqrt{49}}{-3}=-1\)
\(x_2=\dfrac{-1-\sqrt{49}}{-3.2}=\dfrac{4}{3}\)
- 3x2 + x + 4 ≥ 0 <=> - 1 ≤ x ≤ .
Đặt \(t=x^2\) với điều kiện \(t\in R+\)
\(x^4+3x^2+\sqrt{x^2+1}<20\) \(\Rightarrow\) \(f\left(t\right):=t^2+3t^{ }+\sqrt{t^{ }+1}<20=f\left(3\right)\)
Dễ thấy \(f\left(t\right)\) đồng biến trên R+
Do đó, kết hợp với điều kiện \(t\in R+\) ta có
\(f\left(t\right):=t^2+3t^{ }+\sqrt{t^{ }+1}<20=f\left(3\right)\) \(\Leftrightarrow\) \(0\le t<3\)
Vì vậy,
\(x^4+3x^2+\sqrt{x^2+1}<20\) \(\Leftrightarrow\) \(0\le x^2<3\) \(\Leftrightarrow\) \(\left|x\right|<\sqrt{3}\)
Bất phương trình đã cho có nghiệm là \(-\sqrt{3}\)<x<\(\sqrt{3}\)
a) 6x^2 -x-2>=0
\(\Delta=1+24=25\)
\(\Rightarrow\left[{}\begin{matrix}x\le\dfrac{1-5}{2.6}=\dfrac{-1}{3}\\x\ge\dfrac{1+5}{2.6}=\dfrac{1}{2}\end{matrix}\right.\)
b)
\(\dfrac{1}{3}x^2+3x+6< 0\Leftrightarrow x^2+9x+18< 0\left\{\Delta=81-4.18=9\right\}\)
\(x_1=\dfrac{-9-3}{2}=-6;x_2=\dfrac{-9+3}{2}=-3\)
\(N_0BPT:\) \(-6< x< -3\)