K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 4 2020

a/ - Với \(x\ge\frac{3}{5}\) BPT tương đương:

\(2x^2-5x+3< 0\Leftrightarrow1< x< \frac{3}{2}\)

- Với \(x< \frac{3}{5}\) BPT tương đương:

\(x^2+5x-3< 0\Leftrightarrow\frac{-5-\sqrt{37}}{2}< x< \frac{-5+\sqrt{37}}{2}\)

Vậy nghiệm của BPT là: \(\left[{}\begin{matrix}1< x< \frac{3}{2}\\\frac{-5-\sqrt{37}}{2}< x< \frac{-5+\sqrt{37}}{2}\end{matrix}\right.\)

b/ -Với \(x< 8\) BPT vô nghiệm

- Với \(x\ge8\) hai vế ko âm, bình phương:

\(\left(x-8\right)^2>\left(x^2+3x-4\right)^2\)

\(\Leftrightarrow\left(x^2+3x-4\right)^2-\left(x-8\right)^2< 0\)

\(\Leftrightarrow\left(x^2+4x-12\right)\left(x^2-2x+4\right)< 0\)

\(\Leftrightarrow x^2+4x-12< 0\Rightarrow-6< x< 2\) (ktm)

Vậy BPT đã cho vô nghiệm

24 tháng 7 2016

Giải các phương trình và hệ phương trình:

a) x2 - \(2\sqrt{5}\)x + 5 = 0

Ta có: x2 - \(2\sqrt{5}\)x + 5 = 0 <=> ( x = \(\sqrt{5}\) )2 = 0 <=> x - \(\sqrt{5}\) = 0 <=> x = \(\sqrt{5}\)

Vậy phương trình đã cho có tập nghiệm S = ( \(\sqrt{5}\) )

24 tháng 7 2016

c) \(\begin{cases}2x+5y=-1\\3x-2y=8\end{cases}\) <=> \(\begin{cases}6x+15y=-3\\6x-4y=16\end{cases}\) <=> \(\begin{cases}19y=-19\\3x-2y=8\end{cases}\) <=> \(\begin{cases}y=-1\\3x-2.\left(-1\right)=8\end{cases}\) <=> \(\begin{cases}y=-1\\x=2\end{cases}\)

Vậy hệ phương trình có 1 nghiệm duy nhất (x ; y) = (2 ; -1)

4 tháng 4 2020

b, Ta có : \(x^2-3=\left(2x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\)

=> \(\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)=\left(2x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\)

=> \(\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)-\left(2x-\sqrt{3}\right)\left(x+\sqrt{3}\right)=0\)

=> \(\left(x+\sqrt{3}\right)\left(x-\sqrt{3}-2x+\sqrt{3}\right)=0\)

=> \(-x\left(x+\sqrt{3}\right)=0\)

=> \(\left[{}\begin{matrix}x=0\\x=-\sqrt{3}\end{matrix}\right.\)

Vậy phương trình trên có tập nghiệm là \(S=\left\{0,-\sqrt{3}\right\}\)

a, Ta có : \(\left(x-\sqrt{2}\right)+3\left(x^2-2\right)=0\)

=> \(\left(x-\sqrt{2}\right)+3\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\)

=> \(\left(x-\sqrt{2}\right)\left(1+3x+3\sqrt{2}\right)=0\)

=> \(\left[{}\begin{matrix}x=\sqrt{2}\\3x=-3\sqrt{2}-1\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\sqrt{2}\\x=\frac{-3\sqrt{2}-1}{3}\end{matrix}\right.\)

Vậy ....

NV
7 tháng 3 2020

1.

a/ ĐKXĐ: \(-1\le x\le5\)

\(\Leftrightarrow\sqrt{x+3}\le\sqrt{5-x}+\sqrt{x+1}\)

\(\Leftrightarrow x+3\le6+2\sqrt{\left(5-x\right)\left(x+1\right)}\)

\(\Leftrightarrow x-3\le2\sqrt{-x^2+4x+5}\)

- Với \(x< 3\Rightarrow\left\{{}\begin{matrix}VT< 0\\VP\ge0\end{matrix}\right.\) BPT luôn đúng

- Với \(x\ge3\) cả 2 vế ko âm, bình phương:

\(x^2-6x+9\le-4x^2+16x+20\)

\(\Leftrightarrow5x^2-22x-11\le0\) \(\Rightarrow\frac{11-4\sqrt{11}}{5}\le x\le\frac{11+4\sqrt{11}}{5}\)

\(\Rightarrow3\le x\le\frac{11+4\sqrt{11}}{5}\)

Vậy nghiệm của BPT đã cho là \(-1\le x\le\frac{11+4\sqrt{11}}{5}\)

NV
7 tháng 3 2020

1b/

Đặt \(\sqrt{2x^2+8x+12}=t\ge2\)

\(\Rightarrow x^2+4x=\frac{t^2}{2}-6\)

BPT trở thành:

\(\frac{t^2}{2}-12\ge t\Leftrightarrow t^2-2t-24\ge0\) \(\Rightarrow\left[{}\begin{matrix}t\le-4\left(l\right)\\t\ge6\end{matrix}\right.\)

\(\Rightarrow\sqrt{2x^2+8x+12}\ge6\)

\(\Leftrightarrow2x^2+8x-24\ge0\Rightarrow\left[{}\begin{matrix}x\le-6\\x\ge2\end{matrix}\right.\)