Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện : \(x\ge-1\)
Xét hàm số trên [\(-1;+\infty\) ) : \(f\left(x\right)=x^3-3x^2-8x+40\)
\(g\left(x\right)=8\sqrt[4]{4x+4}\)
Theo bất đẳng thức Cauchy, ta có :
\(g\left(x\right)=\sqrt[4]{2^4.2^4.2^4\left(5x+4\right)}\le\frac{2^4+2^4+2^4+\left(4x+4\right)}{4}=x+13\) (2)
Dấu bằng ở (2) xảy ra khi và chỉ khi x = 3
Mặt khác :
\(f\left(x\right)-\left(x+13\right)=x^3-3x^2-9x+27=\left(x-3\right)^2\left(x+3\right)\ge0\) với mọi \(x\ge-1\) (3)
Dấu bằng ở (3) xảy ra khi và chỉ khi x = 3. Ta có :
\(\left(1\right)\Leftrightarrow f\left(x\right)=g\left(x\right)\) (4)
Vậy (4) có nghĩa là dấu bằng ở (2) và (3) đồng thời xảy ra,hay x = 3 (thỏa mãn điều kiện)
Phương trình đã cho có nghiệm duy nhất x = 3
Lời giải
a) \(\sqrt{\left(x-4\right)^2\left(x+1\right)}>0\Leftrightarrow\left\{{}\begin{matrix}x\ne4\\x+1>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ne4\\x>-1\end{matrix}\right.\)
b) \(\sqrt{\left(x+2\right)^2\left(x-3\right)}>0\Rightarrow\left\{{}\begin{matrix}x\ne-2\\x-3>0\end{matrix}\right.\) \(\Rightarrow x>3\)
ta có : \(x^4-4x^2+8x-4>0\Leftrightarrow\left(x^2-2x+2\right)\left(x^2+2x-2\right)>0\)
do \(x^2-2x+2>0\forall x\) rồi nên dấu của biểu thức phụ thuộc vào \(x^2+2x-2\) \(\Rightarrow\) bpt \(\Leftrightarrow x^2+2x-2>0\)
ta có : phương trình \(x^2+2x-2\) có 2 nghiệm \(\left[{}\begin{matrix}x=-1+\sqrt{3}\\x=-1-\sqrt{3}\end{matrix}\right.\)
và \(a=1>0\) \(\Rightarrow\) để \(x^2+2x-2>0\) thì \(\left[{}\begin{matrix}x>-1+\sqrt{3}\\x< -1-\sqrt{3}\end{matrix}\right.\)
vậy \(S=\left(-\infty;-1-\sqrt{3}\right)\cup\left(-1+\sqrt{3};+\infty\right)\)