Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét: \(\sqrt{1+n^2+\frac{n^2}{\left(n+1\right)^2}}=\sqrt{\frac{\left(n+1\right)^2+n^2\left(n+1\right)^2+n^2}{\left(n+1\right)^2}}\) (với \(n\inℕ\))
\(=\sqrt{\frac{n^2+2n+1+n^4+2n^3+n^2+n^2}{\left(n+1\right)^2}}\)
\(=\sqrt{\frac{n^4+n^2+1+2n^3+2n^2+2n}{\left(n+1\right)^2}}\)
\(=\sqrt{\frac{\left(n^2+n+1\right)^2}{\left(n+1\right)^2}}=\frac{n^2+n+1}{n+1}=n+\frac{1}{n+1}\)
Áp dụng vào ta tính được: \(\sqrt{1+2015^2+\frac{2015^2}{2016^2}}+\frac{2015}{2016}=2015+\frac{1}{2016}+\frac{2015}{2016}\)
\(=2015+1=2016\)
Khi đó: \(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=2016\)
\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=2016\)
Đến đây xét tiếp các TH nhé, ez rồi:))
chẳng biết đúng ko,mới lớp 5
\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=\sqrt{1+2015^2+\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)
\(\sqrt{x^2}-\sqrt{2x}+\sqrt{1}+\sqrt{x^2}-\sqrt{4x}+\sqrt{4}=\sqrt{1}+\sqrt{2015^2}+\sqrt{\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)
\(\sqrt{x^2}-\sqrt{6x}+3=1+2015+\frac{2015}{2016}+\frac{2015}{2016}\)
\(x-\sqrt{6x}=1+\frac{2015}{1+2016+2016}-3\)
\(x-\sqrt{6x}=2-\frac{2015}{4033}\)
\(x-\sqrt{6x}=\frac{6051}{4033}\)
ĐK: x khác - 24
\(\frac{2x+5}{x+24}< 1\)
<=> \(\frac{2x+5}{x+24}-1< 0\)
<=> \(\frac{2x+5-x-24}{x+24}< 0\)
<=> \(\frac{x-19}{x+24}< 0\)
TH1: x - 19 < 0 và x + 24 > 0
<=> x < 19 và x > -24
<=>-24 < x < 19
Th2: x - 19 > 0 và x + 24 < 0
<=> x > 19 và x < -24 loại
Vậy -24 < x < 19
\(\frac{2x+5}{x+24}< 1\)
<=> \(2x+5< x+24\)( nhân hai vế với x + 24 và giữ chiều )
<=> \(2x-x< 24-5\)
<=> \(x< 19\)
Vậy nghiệm của bất phương trình là x < 19
Lời giải:
Số số hạng ở tử: $(2x-2):2+1=x$
$\Rightarrow 2+4+6+...+2x=(2x+2).x:2=x(x+1)$
Số số hạng ở mẫu: $(2x+1-1):2+1=x+1$
$\Rightarrow 1+3+5+...+(2x+1)=(2x+1+1)(x+1):2=(x+1)^2$
Khi đó PT trở thành:
$\frac{x(x+1)}{(x+1)^2}=\frac{2016}{2015}$
$\frac{x}{x+1}=\frac{2016}{2015}$
$2015x=2016(x+1)$
$x=-2016$
\(\Leftrightarrow\left(2x-1\right)\left(...\right)=0\Rightarrow x=\frac{1}{2}\)
\(\frac{2x-1}{2020}-\frac{2x-1}{2019}+\frac{2x-1}{2018}=\frac{2x-1}{2017}-\frac{2x-1}{2016}\\ \Leftrightarrow\frac{2x-1}{2020}-\frac{2x-1}{2019}+\frac{2x-1}{2018}-\frac{2x-1}{2017}+\frac{2x-1}{2016}=0\\ \Leftrightarrow\left(2x-1\right)\left(\frac{1}{2020}-\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}+\frac{1}{2016}\right)=0\)
mà \(\frac{1}{2020}-\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}+\frac{1}{2016}\ne0\)
thì \(2x-1=0\\ \Leftrightarrow2x=1\\ \Leftrightarrow x=\frac{1}{2}\)
vậy \(x=\frac{1}{2}\)
\(a.\frac{x}{2x-6}+\frac{x}{2x+2}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=\)\(0\)
\(\Leftrightarrow\frac{x}{2.\left(x-3\right)}+\frac{x}{2.\left(x+1\right)}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{x^2+x+x^2-3x-4x}{2.\left(x+1\right).\left(x-3\right)}=0\)
\(\Leftrightarrow2x^2-6=0\)
\(\Leftrightarrow2x^2=6\)
\(\Leftrightarrow x^2=3\)
\(\Leftrightarrow x=\sqrt{3}\)
\(b.2x^3-5x^2+3x=0\)
\(\Leftrightarrow x.\left(2x^2-5x+3\right)=0\)
\(\Leftrightarrow x.\left(2x^2-2x-3x+3\right)=0\)
\(\Leftrightarrow x.\left[2x.\left(x-1\right)-3.\left(x-1\right)\right]=0\)
\(\Leftrightarrow x.\left(x-1\right).\left(2x-3\right)=0\)
Đến đây tự làm nhé có việc bận
<=> (10x+8)/12-(2x-1)/12>48/12
<=>10x+8-2x+1>48
<=> 10x-2x>48-8-1
<=>8x>39
<=> x>39/8
Vậy tập n là {x/x>39/8}
a) \(\frac{x+\frac{x+1}{5}}{3}=1-\frac{2x-\frac{1-2x}{34}}{5}\)
\(\Leftrightarrow\frac{\frac{5x+x+1}{5}}{3}=1-\frac{\frac{68x-1+2x}{34}}{5}\)
\(\Leftrightarrow\frac{6x+1}{15}=1-\frac{70-1}{170}\)
\(\Leftrightarrow\frac{6x+1}{15}+\frac{70x-1}{170}-1=0\)
\(\Leftrightarrow\frac{34\left(6x+1\right)+3\left(70x-1\right)-510}{510}=0\)
\(\Leftrightarrow204x+34+210x-3-510=0\)
\(\Leftrightarrow414x-479=0\)
\(\Leftrightarrow x=\frac{479}{414}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{479}{414}\right\}\)
\(\frac{2x-4}{2014}+\frac{2x-2}{2016}\) và \(\frac{2x-1}{2017}+\frac{2x-3}{2015}\)
VT = \(\frac{2x-4}{2014}+\frac{2x-2}{2016}\)
= \(\frac{2x-4}{2014}+1+\frac{2x-2}{2016}+1\)
= \(\frac{2x-2018}{2014}+\frac{2x-2018}{2016}\)
VP = \(\frac{2x-1}{2017}+\frac{2x-3}{2015}\)
= \(\frac{2x-1}{2017}+1+\frac{2x-3}{2015}+1\)
= \(\frac{2x-2018}{2017}+\frac{2x-2018}{2015}\)
Mà \(\frac{2x-2018}{2014}>\frac{2x-2018}{2015}\) và \(\frac{2x-2018}{2016}>\frac{2x-2018}{2017}\)
nên \(\frac{2x-4}{2014}+\frac{2x-2}{2016}\) > \(\frac{2x-1}{2017}+\frac{2x-3}{2015}\)
Chúc bn học tốt!!