K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2016

Ta chú ý : \(x^2+x+1>0\) Logarit cơ số 10 hai vế ta có :

\(xlg\left(x^2+x+1\right)<0\)\(\Leftrightarrow\begin{cases}\begin{cases}x>0\\lg\left(x^2+x+1\right)<0\end{cases}\\\begin{cases}x<0\\lg\left(x^2+x+1\right)>0\end{cases}\end{cases}\)

Hệ thứ nhất vô nghiệm

Hệ thứ hai cho ta nghiệm x<-1

23 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

30 tháng 3 2016

Đặt \(f\left(x\right)=\left(\frac{1}{6}\right)^x+2\left(\frac{1}{3}\right)^x+3\left(\frac{1}{2}\right)^x\)

Nhận thấy f(2) = 1. Mặt khác f(x) là tổng của các hàm số nghịch biến trên R. Do đó f(x) cũng là hàm nghịch biến. Từ đó ta có :

\(f\left(x\right)<1=f\left(2\right)\Leftrightarrow x>2\)

Vậy tập nghiệm của bất phương trình là 

\(D=\left(2;+\infty\right)\)

23 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

Hàm lũy thừa, mũ và loagrit

23 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

Hàm lũy thừa, mũ và loagrit

29 tháng 3 2016

Nhận xét rằng \(\sqrt{5}-2=\left(\sqrt{5}-2\right)^{-1}\)

Do đó bất phương trình có thể viết thành :

\(\left(\sqrt{5}-2\right)^{x+1}\ge\left[\left(\left(\sqrt{5}-2\right)^{-1}\right)\right]^{x-3}=\left(\left(\sqrt{5}-2\right)^{3-x}\right)\)

\(\Leftrightarrow x+1\ge3-x\)

\(\Leftrightarrow x\ge1\)

Vậy tập nghiệm của phương trình là :

\(D\left(1;+\infty\right)\)

27 tháng 4 2017

Hỏi đáp Toán

Hỏi đáp Toán

Hỏi đáp Toán

14 tháng 5 2016

Ta có : \(f\left(x\right)=\frac{1}{2}5^{2x+1}\Rightarrow f'\left(x\right)=5^{2x+1}\ln5\)

           \(g\left(x\right)=5^x+4x\ln5\Rightarrow g'\left(x\right)=5^x\ln5+4\ln5=\left(5^x+4\right)\ln5\)

\(f'\left(x\right)< g'\left(x\right)\Leftrightarrow5^{2x+1}\ln5< \left(5^x+4\right)\ln5\)

                     \(\Leftrightarrow5^{2x+1}< 5^x+4\)

                     \(\Leftrightarrow5\left(5^x\right)^2-5^x-4< 0\)

                     \(\Leftrightarrow-\frac{4}{5}< 5^x< 1=5^0\)

                     \(\Leftrightarrow x< 0\) là nghiệm của bất phương trình

11 tháng 4 2016

\(\log_{\frac{1}{2}}\left(4^x+4\right)\ge\log_{\frac{1}{2}}\left(2^{x+1}-3\right)-\log_22^x\)

\(\Leftrightarrow\log_{\frac{1}{2}}\left(4^x+4\right)\ge\log_{\frac{1}{2}}\left(2^{x+1}-3\right)+\log_{\frac{1}{2}}2^x\)

\(\Leftrightarrow\log_{\frac{1}{2}}\left(4^x+4\right)\ge\log_{\frac{1}{2}}\left(2^{2x+1}-3^x\right)\)

\(\Leftrightarrow4^x+4\le2^{2x+1}-3.2^x\)

\(\Leftrightarrow4^x-3.2^x-4\ge0\)

\(\Leftrightarrow\begin{cases}2^x\le-1\left(L\right)\\2^x\ge4\end{cases}\)\(\Leftrightarrow x\ge2\)

Vậy bất phương trình có tập nghiệm \(S=\left(2;+\infty\right)\)

11 tháng 11 2017

câu cbanhbanh

30 tháng 3 2016

Đặt :

\(t=\sqrt{x^2-5x+5}\left(t\ge0\right)\)

Bất phương trình trở thành :

\(\log_2\left(t+1\right)+\log_3\left(t^2+2\right)\le2\)

Xét \(f\left(t\right)=\log_2\left(t+1\right)+\log_3\left(t^2+2\right)\) trên \(\left(0;+\infty\right)\)

Do \(t\ge0\) nên \(\log_2\left(t+1\right)\) và \(\log_3\left(t^2+2\right)\) đều là các hàm số đồng biến, do đó f(t) đồng biến trên  \(\left(0;+\infty\right)\)

Lại có f(1)=2, từ đó suy ra \(t\le1\)
Giải ra được :
\(1\le x\)\(\le\frac{5-\sqrt{5}}{2}\) hoặc \(\frac{5-\sqrt{5}}{2}\le x\) \(\le4\)