Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bảng xét dấu :
\(x\) | \(\frac{1}{2}\) \(1\) |
\(1-x\) | \(-\) \(|\) \(-\) \(0\) \(+\) |
\(2x-1\) | \(-\) \(0\) \(+\) \(|\) \(+\) |
1. Nửa chu vi mảnh vườn : 56 : 2 = 28m
Gọi chiều dài mảnh vườn là x ( m , x < 28 )
Chiều rộng = x - 8
Chiều dài + chiều rộng = 28m
=> Ta có phương trình : x + ( x - 8 ) = 28
<=> x + x - 8 = 28
<=> 2x - 8 = 28
<=> 2x = 36
<=> x = 18 ( tmđk )
=> Chiều dài = 18m ; chiều rộng = 18 - 8 = 10m
Diện tích mảnh vườn = 18 . 10 = 180m2
2. \(x\left(2x+5\right)-2x\left(x+1\right)\le12\)
<=> \(2x^2+5x-2x^2-2x\le12\)
<=> \(3x\le12\)
<=> \(3x\cdot\frac{1}{3}\le12\cdot\frac{1}{3}\)
<=> \(x\le4\)
Biểu diễn thì mình không biết vì mới học lớp 7
3. \(\frac{3}{x-3}=\frac{2}{x+1}\)( đkxđ : \(x\ne3;x\ne-1\))
<=> \(\frac{3\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}=\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+1\right)}\)
<=> \(3x+3=2x-6\)
<=> \(3x-2x=-6-3\)
<=> \(x=-9\)( tmđk )
Câu 3 bạn bổ sung nốt cho mình :
Vậy tập nghiệm của phương trình là S = { -9 }
a, pt <=> x^2-x+5/x^2+x+3 - 1 < 0
<=> x^2-x+5-x^2-x-3/x^2+x+3 > 0
<=> 2-2x/x^2+x+3 > 0
<=> 2-2x > 0 ( vì x^2+x+3 > 0 )
<=> 2 > 2x
<=> x < 1
Vậy x < 1
Tk mk nha
B, =2x2-2x-14\(\le\)x2+1
=(2x2-x2)-2x-15\(\le\)0
=x2-2x-15\(\le\)0
=x2+3x-5x-15\(\le\)0
=x(x+3)-5(x+3)<=0
=(x+3)(x-5)<=0
Bạn giải ra ta được x=-3
x=5
Bài làm:
PT:
đkxđ: \(x\ne0;x\ne2\)
Ta có: \(\frac{x+2}{x-2}=\frac{2}{x^2-2x}+\frac{1}{x}\)
\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}+\frac{x-2}{x\left(x-2\right)}\)
\(\Rightarrow x^2+2x=2+x-2\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(vl\right)\\x+1=0\end{cases}}\Rightarrow x=-1\)
BPT:
Ta có: \(\frac{x+1}{2}-x\le\frac{1}{2}\)
\(\Leftrightarrow\frac{x+1}{2}-x-\frac{1}{2}\le0\)
\(\Leftrightarrow\frac{x+1-2x-1}{2}\le0\)
\(\Leftrightarrow\frac{-x}{2}\le0\)
\(\Rightarrow-x\le0\)
\(\Rightarrow x\ge0\)
a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)
\(\frac{x+2}{x-2}=\frac{2}{x^2-2x}+\frac{1}{x}\)
\(\Leftrightarrow\frac{2}{x\left(x-2\right)}+\frac{1}{x}-\frac{x+2}{x-2}=0\)
\(\Leftrightarrow\frac{2+x-2-x^2-2x}{x\left(x-2\right)}=0\)
\(\Leftrightarrow-x^2-x=0\)
\(\Leftrightarrow-x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=-1\left(tm\right)\end{cases}}}\)
Vậy \(S=\left\{-1\right\}\)
b) \(\frac{x+1}{2}-x\le\frac{1}{2}\)
\(\Leftrightarrow x+1-2x-1\le0\)
\(\Leftrightarrow-x\le0\)
\(\Leftrightarrow x\ge0\)
Vậy \(x\ge0\)
\(\frac{x+4}{5}-x+4>\frac{x}{3}-\frac{x-2}{2}\)
<=>(x+4).6-30.(x+4)>10x-15(x-2)
<=>-24(x+4)>10x-15x+30
<=>-24x-96>-5x+30
<=>-24x+5x>30+96
<=>-19x>126
<=>x<126/19<7
<=>x<7
\(x-\frac{x-3}{8}\ge3-\frac{x-3}{12}\)
<=>24x-3(x-3)>72-2(x-3)
<=>24x-3x+9>72-2x+6
<=>21x+2x>78-9
<=>23x>69
<=>x>3
=>3<x<7
=>x={4;5;6}
a) Thay x = 3 vào bất phương trình ta được: 2.3 + 3 < 9 <=> 9 < 9 (khẳng định sai)
Vậy x = 3 không là nghiệm của bất phương trình2x + 3 < 9
b) Thay x = 3 vào bất phương trình ta có: -4.3 > 2.3 + 5 => -12 > 11 (khẳng định sai)
Vậy x = 3 không là nghiệm của bất phương trình -4x > 2x + 5
c) Thay x = 3 vào bất phương trình ta có: 5 - 3 > 3.3 -12 => 2 > -3 (khẳng định đúng)
Vậy x = 3 là nghiệm của bất phương trình 5 - x > 3x - 12