K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2017

 Bảng xét dấu :

\(x\)                          \(\frac{1}{2}\)                                     \(1\)    
\(1-x\)           \(-\)          \(|\)                \(-\)               \(0\)             \(+\)
\(2x-1\)           \(-\)         \(0\)               \(+\)                \(|\)              \(+\)
12 tháng 6 2020

1. Nửa chu vi mảnh vườn : 56 : 2 = 28m

Gọi chiều dài mảnh vườn là x ( m , x < 28 )

Chiều rộng = x - 8

Chiều dài + chiều rộng = 28m

=> Ta có phương trình : x + ( x - 8 ) = 28

                               <=> x + x - 8 = 28

                               <=> 2x - 8 = 28

                               <=> 2x = 36 

                               <=> x = 18 ( tmđk )

=> Chiều dài = 18m ; chiều rộng = 18 - 8 = 10m

Diện tích mảnh vườn = 18 . 10 = 180m2

2. \(x\left(2x+5\right)-2x\left(x+1\right)\le12\)

<=> \(2x^2+5x-2x^2-2x\le12\)

<=> \(3x\le12\)

<=> \(3x\cdot\frac{1}{3}\le12\cdot\frac{1}{3}\)

<=> \(x\le4\)

Biểu diễn thì mình không biết vì mới học lớp 7

3. \(\frac{3}{x-3}=\frac{2}{x+1}\)( đkxđ : \(x\ne3;x\ne-1\))

<=> \(\frac{3\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}=\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+1\right)}\)

<=> \(3x+3=2x-6\)

<=> \(3x-2x=-6-3\)

<=> \(x=-9\)( tmđk )

12 tháng 6 2020

Câu 3 bạn bổ sung nốt cho mình :

Vậy tập nghiệm của phương trình là S = { -9 } 

22 tháng 4 2018

a, pt <=> x^2-x+5/x^2+x+3 - 1 < 0

<=> x^2-x+5-x^2-x-3/x^2+x+3 > 0

<=> 2-2x/x^2+x+3 > 0

<=> 2-2x > 0 ( vì x^2+x+3 > 0 )

<=> 2 > 2x

<=> x < 1

Vậy x < 1

Tk mk nha

22 tháng 4 2018

B, =2x2-2x-14\(\le\)x2+1

    =(2x2-x2)-2x-15\(\le\)0

    =x2-2x-15\(\le\)0

    =x2+3x-5x-15\(\le\)0

    =x(x+3)-5(x+3)<=0

    =(x+3)(x-5)<=0

    Bạn giải ra ta được x=-3

                                      x=5

7 tháng 8 2020

Bài làm:

PT:

đkxđ: \(x\ne0;x\ne2\)

Ta có: \(\frac{x+2}{x-2}=\frac{2}{x^2-2x}+\frac{1}{x}\)

\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}+\frac{x-2}{x\left(x-2\right)}\)

\(\Rightarrow x^2+2x=2+x-2\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(vl\right)\\x+1=0\end{cases}}\Rightarrow x=-1\)

BPT:

Ta có: \(\frac{x+1}{2}-x\le\frac{1}{2}\)

\(\Leftrightarrow\frac{x+1}{2}-x-\frac{1}{2}\le0\)

\(\Leftrightarrow\frac{x+1-2x-1}{2}\le0\)

\(\Leftrightarrow\frac{-x}{2}\le0\)

\(\Rightarrow-x\le0\)

\(\Rightarrow x\ge0\)

7 tháng 8 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)

\(\frac{x+2}{x-2}=\frac{2}{x^2-2x}+\frac{1}{x}\)

\(\Leftrightarrow\frac{2}{x\left(x-2\right)}+\frac{1}{x}-\frac{x+2}{x-2}=0\)

\(\Leftrightarrow\frac{2+x-2-x^2-2x}{x\left(x-2\right)}=0\)

\(\Leftrightarrow-x^2-x=0\)

\(\Leftrightarrow-x\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=-1\left(tm\right)\end{cases}}}\)

Vậy \(S=\left\{-1\right\}\)

b) \(\frac{x+1}{2}-x\le\frac{1}{2}\)

\(\Leftrightarrow x+1-2x-1\le0\)

\(\Leftrightarrow-x\le0\)

\(\Leftrightarrow x\ge0\)

Vậy \(x\ge0\)

3 tháng 7 2015

\(\frac{x+4}{5}-x+4>\frac{x}{3}-\frac{x-2}{2}\)

<=>(x+4).6-30.(x+4)>10x-15(x-2)

<=>-24(x+4)>10x-15x+30

<=>-24x-96>-5x+30

<=>-24x+5x>30+96

<=>-19x>126

<=>x<126/19<7

<=>x<7

\(x-\frac{x-3}{8}\ge3-\frac{x-3}{12}\)

<=>24x-3(x-3)>72-2(x-3)

<=>24x-3x+9>72-2x+6

<=>21x+2x>78-9

<=>23x>69

<=>x>3

=>3<x<7

=>x={4;5;6}

28 tháng 5 2018

a) Thay x = 3 vào bất phương trình ta được: 2.3 + 3 < 9 <=> 9 < 9 (khẳng định sai)

Vậy x = 3 không là nghiệm của bất phương trình2x + 3 < 9

b) Thay x = 3 vào bất phương trình ta có: -4.3 > 2.3 + 5 => -12 > 11 (khẳng định sai)

Vậy x = 3 không là nghiệm của bất phương trình -4x > 2x + 5

c) Thay x = 3 vào bất phương trình ta có: 5 - 3 > 3.3 -12 => 2 > -3 (khẳng định đúng)

Vậy x = 3 là nghiệm của bất phương trình 5 - x > 3x - 12