K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2022

\(x^2-2x+1< 9\)

\(\Leftrightarrow\left(x-1\right)^2< 9\)

\(\Leftrightarrow x-1< 3\)

\(\Leftrightarrow x< 4\)

\(\left(x-1\right)\left(4-x^2\right)\ge0\)

\(\Leftrightarrow\left(x-1\right)\left(2-x\right)\left(2+x\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2-x=0\\2+x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-2\end{matrix}\right.\)

\(\dfrac{x+2}{x-5}< 0\)

\(\Leftrightarrow x+2< 0\)

\(\Leftrightarrow x< -2\)

11 tháng 4 2022

a)\(x^2-2x+1< 9\)

\(\Leftrightarrow\left(x-1\right)^2< 9\)

\(\Leftrightarrow\left(x-1\right)^2-9< 0\)

\(\Leftrightarrow\left(x-1-3\right)\left(x-1+3\right)< 0\)

\(\Leftrightarrow\left(x-4\right)\left(x+2\right)< 0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4< 0\\x+2>0\end{matrix}\right.hay\left[{}\begin{matrix}x-4>0\\x+2< 0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x< 4\\x>-2\end{matrix}\right.hay\left[{}\begin{matrix}x>4\\x< -2\end{matrix}\right.\)(vô lý)

-Vậy nghiệm của BĐT là \(-2< x< 4\).

b) \(\left(x-1\right)\left(4-x^2\right)\ge0\)

\(\Leftrightarrow\left(x-1\right)\left(2-x\right)\left(x+2\right)\ge0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+2\right)\le0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1< 0\\x-2>0\\x+2>0\end{matrix}\right.\) hay \(\left[{}\begin{matrix}x-1>0\\x-2< 0\\x+2>0\end{matrix}\right.\) hay \(\left[{}\begin{matrix}x-1>0\\x-2 >0\\x+2< 0\end{matrix}\right.\) hay \(\left[{}\begin{matrix}x-1< 0\\x-2< 0\\x+2< 0\end{matrix}\right.\)

 \(\Leftrightarrow\left[{}\begin{matrix}x< 1\\x>2\\x>-2\end{matrix}\right.\) (vô lí) hay \(\left[{}\begin{matrix}x>1\\x< 2\\x>-2\end{matrix}\right.\) (có thể xảy ra) hay

\(\left[{}\begin{matrix}x>1\\x>2\\x< -2\end{matrix}\right.\) (vô lí) hay \(\left[{}\begin{matrix}x< 1\\x< 2\\x< -2\end{matrix}\right.\) (có thể xảy ra)

-Vậy nghiệm của BĐT là \(x< -2\) hay \(1< x< 2\).

c) ĐKXĐ: \(x\ne5\)

 \(\dfrac{x+2}{x-5}< 0\Leftrightarrow\left[{}\begin{matrix}x+2< 0\\x-5>0\end{matrix}\right.hay\left[{}\begin{matrix}x+2>0\\x-5< 0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< -2\\x>5\end{matrix}\right.\)(vô lí) hay

\(\left[{}\begin{matrix}x>-2\\x< 5\end{matrix}\right.\) (có thể xảy ra)

-Vậy nghiệm của BĐT là \(-2< x< 5\)

11 tháng 4 2017

\(x^2< 9\)

\(\Leftrightarrow x^2< 3^2\)

\(\Leftrightarrow x< 3\)

\(\left(x-2\right)^2< 4\)

\(\Leftrightarrow\left(x-2\right)^2< 2^2\)

\(\Leftrightarrow x-2< 2\)

\(\Leftrightarrow x< 1\)

\(\left(2x-5\right)^2>9\)

11 tháng 4 2017

\(\left(2x-5\right)^2>9\)

\(\Leftrightarrow\left(2x-5\right)^2>3^2\)

\(\Leftrightarrow2x-5>3\)

\(\Leftrightarrow2x>8\)

\(\Leftrightarrow x>4\)

\(x^3+2x< 0\)

\(\Leftrightarrow x\left(x^2+2\right)< 0\)

\(TH1:\Leftrightarrow\orbr{\begin{cases}x>0\\x^2+2< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x>0\\x^2< -2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x>0\\x\in rỗng\end{cases}}}\)

\(TH2:\Leftrightarrow\orbr{\begin{cases}X< 0\\X^2+2>0\end{cases}\Leftrightarrow\orbr{\begin{cases}X< 0\\X^2>-2\end{cases}\Leftrightarrow}\orbr{\begin{cases}X< 0\\X\in RỖNG\end{cases}}}\)

\(x^2-4x+5< 0\)

\(\Leftrightarrow x^2+x-5x-5< 0\)

\(\Leftrightarrow\left(x^2+x\right)-\left(5x+5\right)< 0\)

\(\Leftrightarrow x\left(x+1\right)-5\left(x+1\right)< 0\)

\(\Leftrightarrow\left(x+1\right)\left(x-5\right)< 0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1< 0\\x-5>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< -1\\x>5\end{cases}\Leftrightarrow}rỗng}\)

\(\Leftrightarrow\orbr{\begin{cases}x+1>0\\x-5< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>-1\\x< 5\end{cases}\Leftrightarrow-1< x< 5}\)

 k cho mk nhé 

25 tháng 8 2020

Câu 1

\(x^3-2x^2+3x-6< 0\\ \Leftrightarrow x^2\left(x-2\right)+3\left(x-2\right)< 0\\ \Leftrightarrow\left(x-2\right)\left(x^2+3\right)< 0\\ \Leftrightarrow\left\{{}\begin{matrix}x-2< 0\Leftrightarrow x>2\\x^2+3< 0\Leftrightarrow x^2< 0\Leftrightarrow x\in\varnothing\end{matrix}\right.\)

S = {x/x>2}

câu 1 : tách 6=2.3

Câu 2: tách -4x = -3x-x

Câu 3 tách x= 2x-3x

a: (x-3)(x-2)<0

=>x-2>0 và x-3<0

=>2<x<3

b: \(\left(x+3\right)\left(x+4\right)\left(x^2+2\right)\ge0\)

\(\Leftrightarrow\left(x+3\right)\left(x+4\right)\ge0\)

=>x>=-3 hoặc x<=-4

c: \(\dfrac{x-1}{x-2}\ge0\)

nên \(\left[{}\begin{matrix}x-2>0\\x-1\le0\end{matrix}\right.\Leftrightarrow x\in(-\infty;1]\cup\left(2;+\infty\right)\)

d: \(\dfrac{x+3}{2-x}\ge0\)

\(\Leftrightarrow\dfrac{x+3}{x-2}\le0\)

hay \(x\in[-3;2)\)

11 tháng 5 2020

\(x^3-6x^2+5x+12>0\\ < =>\left(x^3-5x-x+5x\right)+12>0\\ < =>\left[\left(x^3-x\right)-\left(5x-5x\right)\right]+12>0\\ < =>x^2+12>0\\ < =>x^2>-12\\ =>x\in R\\ BPTcóvôsốnghiem\)

22 tháng 5 2018

C1a) x2 - 2x + 1 < 9

⇔ ( x - 1)2 < 9

⇔ / x - 1/ < 3

⇔ -3 < x - 1 < 3

⇔ - 2 < x < 4

C2a) x2 - 2x + 1 < 9

⇔ x2 - 2x - 8 < 0

⇔ x2 + 2x - 4x - 8 < 0

⇔ x( x + 2) - 4( x + 2) < 0

⇔ ( x + 2)( x - 4) < 0

Lập bảng xét dấu , ta có :

x x+2 x-4 Tích số -2 4 0 0 0 0 - + + - - + + - +

Vậy , nghiệm của BPT : - 2 < x < 4

22 tháng 5 2018

b) x2 - 5x + 6 < 0

⇔ x2 - 2x - 3x + 6 < 0

⇔ x( x - 2) - 3( x - 2) < 0

⇔ ( x - 2)( x - 3) < 0

Lập bảng xét dấu , ta có :
x x-2 x-3 Tích Số 2 3 0 0 0 0 - + + - - + + - +

Vậy , nghiệm của BPT : 2 < x < 3

21 tháng 1 2018

Ai lm giúp mk vs câu nào cũng được. Ai làm xong sớm nhất sẽ được tick