K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2018

bai dai qua

21 tháng 4 2018

a (9+x)=2 ta có (9+x)= 9+x khi 9+x >_0 hoặc >_ -9

                           (9+x)= -9-x khi 9+x <0 hoặc x <-9

1)pt   9+x=2 với x >_ -9

    <=> x  = 2-9

  <=>  x=-7 thỏa mãn điều kiện (TMDK)

2) pt   -9-x=2 với x<-9

         <=> -x=2+9

             <=>  -x=11

                       x= -11 TMDK

 vậy pt có tập nghiệm S={-7;-9}

các cau con lai tu lam riêng nhung cau nhan với số âm thi phan điều kiện đổi chiều nha vd

nhu cau o trên mk lam 9+x>_0    hoặc x>_0

với số âm thi -2x>_0  hoặc x <_ 0  nha

29 tháng 4 2017

Bài 1:

a. ||x|-2| = 1

1) ||x|-2| = |x-2| khi \(x\ge0\)

*) \(x-2\ge0\Leftrightarrow x\ge2\) . Với \(x\ge2\) ta có: \(x-2=1\Leftrightarrow x=3\)

*) \(x-2< 0\Leftrightarrow x< 2\) . Với x<2 ta có: \(-x+2=1\Leftrightarrow x=1\)

2) ||x| - 2| = |-x - 2| khi \(x< 0\)

*) \(-x-2\ge0\Leftrightarrow x\le-2\) . Với \(x\le-2\) ta có: \(-x-2=1\Leftrightarrow x=-3\)

*) \(-x-2< 0\Leftrightarrow x>-2\) . Với \(x>-2\) ta có: \(x+2=1\Leftrightarrow x=-1\)

vậy tập nghiệm của phương trình đã cho \(S=\left\{-3;-1;1;3\right\}\)

b. ||x|-1| = x+4

1) ||x|-1| = |x-1| khi \(x\ge0\)

*) \(x-1\ge0\Leftrightarrow x\ge1\) . Với \(x\ge1\) ta có: \(x-1=x+4\Leftrightarrow0x=5\) (vô nghiệm)

*) \(x-1< 0\Leftrightarrow x< 1\) . Với x<1 ta có: \(-x+1=x+4\Leftrightarrow x=-\dfrac{3}{2}\)

2) ||x|-1| = |-x-1| khi x<0

*) \(-x-1\ge0\Leftrightarrow x\le-1\) . Với \(x\le-1\) ta có: \(-x-1=x+4\Leftrightarrow x=-\dfrac{5}{2}\)

*) \(-x-1< 0\Leftrightarrow x>-1\) . Với x>-1 ta có: \(x+1=x+4\Leftrightarrow0x=3\) (vô nghiệm)

Vậy tập nghiệm của phương trình đã cho là \(S=\left\{-\dfrac{5}{2};-\dfrac{3}{2}\right\}\)

8 tháng 5 2018

2)a)\(\left|2x+1\right|< \left|x-3\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1< x-3\\2x+1< -x+3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x-x< -1-3\\2x+x< -1+3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x< -4\\3x< 2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< -4\\x< \dfrac{2}{3}\end{matrix}\right.\)

Vậy S=...

9 tháng 5 2021

a,\(2x+5=2-x\)

\(< =>2x+x+5-2=0\)

\(< =>3x+3=0\)

\(< =>x=-1\)

b, \(/x-7/=2x+3\)

Với \(x\ge7\)thì \(PT< =>x-7=2x+3\)

\(< =>2x-x+3+7=0\)

\(< =>x+10=0< =>x=-10\)( lọai )

Với \(x< 7\)thì \(PT< =>7-x=2x+3\)

\(< =>2x+x+3-7=0\)

\(< =>3x-4=0< =>x=\frac{4}{3}\) ( loại )

9 tháng 5 2021

c,\(\frac{4}{x+2}-\frac{4x-6}{4x-x^3}=\frac{x-3}{x\left(x-2\right)}\left(đk:x\ne-2;0;2\right)\)

\(< =>\frac{4x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{4x-6}{x\left(x-2\right)\left(2+x\right)}=\frac{\left(x-3\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}\)

\(< =>4x^2-8x+4x-6=x^2-x-6\)

\(< =>4x^2-x^2-4x+x-6+6=0\)

\(< =>3x^2-3x=0< =>3x\left(x-1\right)=0< =>\orbr{\begin{cases}x=0\left(loai\right)\\x=1\left(tm\right)\end{cases}}\)

Cách giải

a, 2x - x (3x + 1 ) < 15 - 3x(x + 2)

<=> 2x - 3x- x < 15 - 3x2 - 6x

<=> 7x < 15

<=> x < 15/7 Vậy Tập nghiệm của BPT là : { x / x < 15/7 }

b , BPT <=> 2(1 - 2x ) - 16 < 1 - 5x + 8x

    <=> -7x < 15

   <=> x > -15/7 Vậy tập nghiệm của BPT là : { x / x > -15/7 }

6 tháng 8 2020

a) 2x-x(3x+1) < 15-3x(x+2)

<=> 2x-3x2-x < 15-3x2-6x

<=> 2x-3x2-x+3x2+6x < 15

<=> 7x < 15

<=> x < 15/7

Vậy tập nghiệm của bất phương trình là x < 15/7

b) \(\frac{1-2x}{4}-2\le\frac{1-5x}{8}+x\)

Quy đồng mẫu ta được :

\(\frac{2-4x}{8}-\frac{16}{8}\le\frac{1-5x}{8}+\frac{8x}{8}\)

Khử mẫu

=> \(2-4x-16\le1-5x+8x\)

<=> \(-4x+5x-8x\le1-2+16\)

<=> \(-7x\le15\)

<=> \(x\ge-\frac{15}{7}\)

Vậy tập nghiệm của bất phương trình là \(x\ge-\frac{15}{7}\)