Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a
x^2-8x<0
<=> x(x-8)<0
th1: x<0 và x-8>0
x<0 và x>8
<=> 8<x<0 ( vô lý)
th2: x>0 và x-8<0
<=> x>0 và x<8
<=> 0<x<8( tm)
vậy........
a) \(x^2-8x< 0\)
\(\Leftrightarrow x\left(x-8\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x>0\\x-8< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x< 0\\x-8>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>0\\x< 8\end{cases}}\) hoặc \(\hept{\begin{cases}x< 0\\x>8\end{cases}}\) (loại)
\(\Leftrightarrow0< x< 8\)
b) \(x^2< 6x-5\)
\(\Leftrightarrow x^2-6x+5< 0\)
\(\Leftrightarrow x^2-x-5x+5< 0\)
\(\Leftrightarrow x\left(x-1\right)-5\left(x-1\right)< 0\)
\(\Leftrightarrow\left(x-1\right)\left(x-5\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x-1>0\\x-5< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x-1< 0\\x-5>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>1\\x< 5\end{cases}}\) hoặc \(\hept{\begin{cases}x< 1\\x>5\end{cases}}\) (loại)
\(\Leftrightarrow1< x< 5\)
c) \(\frac{x-3}{x-2}< 0\)
\(\Leftrightarrow\hept{\begin{cases}x-3>0\\x-2< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x-3< 0\\x-2>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>3\\x< 2\end{cases}}\) (loại) hoặc \(\hept{\begin{cases}x< 3\\x>2\end{cases}}\)
\(\Leftrightarrow2< x< 3\)
d) \(\frac{x+1}{x-3}>2\) (ĐK: \(x\ne3\) )
\(\Leftrightarrow\frac{x+1}{x-3}-2>0\)
\(\Leftrightarrow\frac{x+1-2\left(x-3\right)}{x-3}>0\)
\(\Leftrightarrow\frac{-x+7}{x-3}>0\)
\(\Leftrightarrow\hept{\begin{cases}-x+7>0\\x-3>0\end{cases}}\) hoặc \(\hept{\begin{cases}-x+7< 0\\x-3< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-x>-7\\x>3\end{cases}}\) hoặc \(\hept{\begin{cases}-x< -7\\x< 3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x< 7\\x>3\end{cases}}\) hoặc \(\hept{\begin{cases}x>7\\x< 3\end{cases}}\) (loại)
\(\Leftrightarrow3< x< 7\)
\(x^2< 9\)
\(\Leftrightarrow x^2< 3^2\)
\(\Leftrightarrow x< 3\)
\(\left(x-2\right)^2< 4\)
\(\Leftrightarrow\left(x-2\right)^2< 2^2\)
\(\Leftrightarrow x-2< 2\)
\(\Leftrightarrow x< 1\)
\(\left(2x-5\right)^2>9\)
\(\left(2x-5\right)^2>9\)
\(\Leftrightarrow\left(2x-5\right)^2>3^2\)
\(\Leftrightarrow2x-5>3\)
\(\Leftrightarrow2x>8\)
\(\Leftrightarrow x>4\)
\(x^3+2x< 0\)
\(\Leftrightarrow x\left(x^2+2\right)< 0\)
\(TH1:\Leftrightarrow\orbr{\begin{cases}x>0\\x^2+2< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x>0\\x^2< -2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x>0\\x\in rỗng\end{cases}}}\)
\(TH2:\Leftrightarrow\orbr{\begin{cases}X< 0\\X^2+2>0\end{cases}\Leftrightarrow\orbr{\begin{cases}X< 0\\X^2>-2\end{cases}\Leftrightarrow}\orbr{\begin{cases}X< 0\\X\in RỖNG\end{cases}}}\)
\(x^2-4x+5< 0\)
\(\Leftrightarrow x^2+x-5x-5< 0\)
\(\Leftrightarrow\left(x^2+x\right)-\left(5x+5\right)< 0\)
\(\Leftrightarrow x\left(x+1\right)-5\left(x+1\right)< 0\)
\(\Leftrightarrow\left(x+1\right)\left(x-5\right)< 0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1< 0\\x-5>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< -1\\x>5\end{cases}\Leftrightarrow}rỗng}\)
\(\Leftrightarrow\orbr{\begin{cases}x+1>0\\x-5< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>-1\\x< 5\end{cases}\Leftrightarrow-1< x< 5}\)
k cho mk nhé
\(4x^2-4x-5\left|2x-1\right|-5=0\)
\(\Leftrightarrow-5\left|2x-1\right|=5-4x^2+4x\)
\(\Leftrightarrow\left|2x-1\right|=\frac{-4x^2+4x+5}{-5}\)
\(\Leftrightarrow\left|2x-1\right|=\frac{4x\left(x-1\right)}{5}-1\)
TH1 : \(2x-1=\frac{4x\left(x-1\right)}{5}-1\Leftrightarrow2x=\frac{4x\left(x-1\right)}{5}\)
\(\Leftrightarrow10x=4x^2-4x\Leftrightarrow14x-4x^2=0\)
\(\Leftrightarrow-2x\left(2x-7\right)=0\Leftrightarrow x=0;x=\frac{7}{2}\)
TH2 : \(2x-1=-\left(\frac{4x\left(x-1\right)}{5}-1\right)\Leftrightarrow2x-1=-\frac{4x\left(x-2\right)}{5}+1\)
\(\Leftrightarrow2x-2=-\frac{4x\left(x-2\right)}{5}\Leftrightarrow10x-10=-4x^2+8x\)
\(\Leftrightarrow2x-10+4x^2=0\Leftrightarrow2\left(2x^2+x-5\ne0\right)=0\)tự chứng minh
Vậy tập nghiệm của phương trình là S = { 0 ; 7/2 }
a) \(-x^2+3x+4>0\)
\(\Leftrightarrow-\left(x^2-3x-4\right)>0\)
\(\Leftrightarrow x^2-3x-4< 0\)
\(\Leftrightarrow x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{25}{4}< 0\)
\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2-\frac{25}{4}< 0\)
\(\Leftrightarrow\left(x-\frac{3}{2}-\frac{5}{2}\right)\left(x-\frac{3}{2}+\frac{5}{2}\right)< 0\)
\(\Leftrightarrow\left(x-4\right)\left(x-1\right)< 0\)
\(\Leftrightarrow1< x< 4\)
b) \(x^2-6x+5\ge0\)
\(\Leftrightarrow x^2-2.3x+9-4\ge0\)
\(\Leftrightarrow\left(x-3\right)^2-4\ge0\)
\(\Leftrightarrow\left(x-3-2\right)\left(x-3+3\right)\ge0\)
\(\Leftrightarrow x\left(x-5\right)\ge0\)
Còn lại tự làm
/x^2-x+2/>3x+7
suy ra
/x^2-x+2/>3x+7 hoặc /x^2-x+2/<-3x-7
tự làm tiếp nhé