Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x^2-4x-5\left|2x-1\right|-5=0\)
\(\Leftrightarrow-5\left|2x-1\right|=5-4x^2+4x\)
\(\Leftrightarrow\left|2x-1\right|=\frac{-4x^2+4x+5}{-5}\)
\(\Leftrightarrow\left|2x-1\right|=\frac{4x\left(x-1\right)}{5}-1\)
TH1 : \(2x-1=\frac{4x\left(x-1\right)}{5}-1\Leftrightarrow2x=\frac{4x\left(x-1\right)}{5}\)
\(\Leftrightarrow10x=4x^2-4x\Leftrightarrow14x-4x^2=0\)
\(\Leftrightarrow-2x\left(2x-7\right)=0\Leftrightarrow x=0;x=\frac{7}{2}\)
TH2 : \(2x-1=-\left(\frac{4x\left(x-1\right)}{5}-1\right)\Leftrightarrow2x-1=-\frac{4x\left(x-2\right)}{5}+1\)
\(\Leftrightarrow2x-2=-\frac{4x\left(x-2\right)}{5}\Leftrightarrow10x-10=-4x^2+8x\)
\(\Leftrightarrow2x-10+4x^2=0\Leftrightarrow2\left(2x^2+x-5\ne0\right)=0\)tự chứng minh
Vậy tập nghiệm của phương trình là S = { 0 ; 7/2 }
a) \(x^2-5x+6< 0\)
\(\Leftrightarrow x^2-2x-3x+6< 0\)
\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)< 0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x-2>0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x< 3\end{cases}}}\)
\(\Leftrightarrow2< x< 3\)
Vậy \(2< x< 3\)là các giá trị cần tìm của bất phương trình
b) \(\frac{2x\left(3x-5\right)}{x^2+1}< 0\)
\(\Leftrightarrow2x\left(3x-5\right)< 0\)(vì \(x^2+1>0\forall x\) )
\(\Leftrightarrow\hept{\begin{cases}2x>0\\3x-5< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>0\\3x< 5\end{cases}\Leftrightarrow}\hept{\begin{cases}x>0\\x< \frac{5}{3}\end{cases}}}\)
\(\Leftrightarrow0< x< \frac{5}{3}\)
Vậy \(0< x< \frac{5}{3}\)là các giá trị cần tìm của bất phương trình
a)
\(2x-1+5\left(3-x\right)>0\\ 2x-2+15-5x>0\\ -3x+13>0\\ x< \dfrac{13}{3}.\)
\(\Leftrightarrow x^2-2x+3>0\)
\(\Leftrightarrow\left(x-1\right)^2+2>0\)(luôn đúng)