Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi chiều dài thửa ruộng là x(m) chiều rộng là y(m) ( x,y>o)
diện tích thửa ruộng là x.y (m2)
nếu tăng chiều dài thêm 2 và tăng chiều rộng thêm 3 thì diện tích thửa ruộng lúc này là (x+2)(y+3)=100+xy
nếu cùng giảm cả chiều dài và chiều rộng là 2m thì diện tích lúc này là (x-2)(y-2)=68-xy
từ đó ta tìm được diện tích là 308m2
Nửa chu vi thửa ruộng là: `198:2=99(m)`
Gọi chiều dài thửa ruộng là: `x (m)` `ĐK: 0 < x < 99`
`=>` Chiều rộng thửa ruộng là: `99-x (m)`
Vì diện tích thửa ruộng bằng `2430 m^2` nên ta có pt:
`x(99-x)=2430`
`<=>99x-x^2=2430`
`<=>x^2-99x+2430=0`
`<=>x^2-45x-54x+2430=0`
`<=>(x-45)(x-54)=0`
`<=>` $\left[\begin{matrix} x=45\\ x=54\end{matrix}\right.$ (t/m)
`=>` $\left[\begin{matrix} D=45=>R=99-45=54(Loại)\\ D=54=>R=99-54=45(t/m)\end{matrix}\right.$
Vậy chiều dài, chiều rộng của mảnh vườn lần lượt là: `54;45 (m)`
Gọi chiều dài thửa ruộng là x(m)
Gọi chiều rộng thửa rộng là y(m)
Theo bài ra ta có hệ phương trình:
\(\hept{\begin{cases}2\left(x+y\right)=250\\2\left(\frac{x}{3}+2y\right)=250\end{cases}}\Rightarrow\hept{\begin{cases}x=75\\y=50\end{cases}}\)
Diện tích thửa ruộng là: \(75.50=3750\)
Gọi chiều rộng của vườn hoa hình chữ nhật là x (x>0). Như vậy thì chiều dài của vườn hoa hình chữ nhật này là x+6.
Ta lập được phương trình \(x\left(x+6\right)=91\Leftrightarrow\left(x+13\right)\left(x-7\right)=0\Rightarrow x=7\left(m\right)\)
Chu vi của vườn hoa là \(2\left(x+x+6\right)=40\left(m\right)\)
Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của thửa ruộng(Điều kiện: a>0; b>0 và \(a\ge b\))
Vì chu vi của thửa ruộng là 190m nên ta có phương trình:
\(2\left(a+b\right)=190\)
\(\Leftrightarrow a+b=95\)(1)
Vì 2 lần chiều dài kém 3 lần chiều rộng của thửa ruộng là 10m nên ta có phương trình:
\(2a+10=3b\)
\(\Leftrightarrow2a-3b=-10\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a+b=95\\2a-3b=-10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a+2b=190\\2a-3b=-10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5b=200\\a+b=95\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=40\left(nhận\right)\\a=95-40=55\left(nhận\right)\end{matrix}\right.\)
Diện tích thửa ruộng là:
\(S=ab=55\cdot40=2200m^2\)
Gọi chiều dài của tấm bìa là x (x > 3) (dm)
⇒ Chiều rộng của tấm bìa là x – 3 (dm)
Nếu tăng chiều dài 1 dm và giảm chiều rộng 1 dm thì diện tích là 66 d m 2 nên ta có phương trình:
(x + 1)(x – 3 – 1) = 66
⇔ (x + 1)(x – 4 ) = 66
⇔ x 2 – 3x – 4 – 66 = 0
⇔ x 2 – 3x – 70 = 0
Δ = 3 2 - 4.(-70) = 289 ⇒ ∆ = 17
⇒ Phương trình đã cho có 2 nghiệm
Do x > 3 nên x =10
Vậy chiều dài của tấm bìa là 10 dm
Chiều rộng của tấm bìa là 7 dm.
2 lần chiều dài bằng 3 lần chiều rộng
=>Chiều dài bằng 3/2 chiều rộng
Nửa chu vi hình chữ nhật là:
80:2=40(cm)
Chiều rộng hình chũ nhật là:
40:(2+3)x2=16(cm)
Chiều dài là:
16:2x3=24(cm)
Diện tích hình chữ nhật là:
24x16=384(cm2)
ĐÁP SỐ : 384cm2
Nửa chu vi hình chữ nhật là:
80 : 2 = 40 (cm)
Gọi chiều dài là x, chiều rộng là y (x;y>0)
Ta có hệ phương trình: \(\hept{\begin{cases}2x=3y\\x+y=40\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x-3y=0\\x+y=40\end{cases}}\)( x 3 cho phương trình 2 )
\(\Leftrightarrow\hept{\begin{cases}2x-3y=0\\3x+3y=120\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}5x=120\\x+y=40\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=24\\24+y=40\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=24\\y=16\end{cases}}\)
Diện tích hình chữ nhật là:
24 x 16 = 384 (cm2)
Đ/s:..
P/s: Giải = pp cộng đại số nhá
#TK:
Gọi a(m) và b(m) lần lượt là chiều dài và chiểu rộng của thửa ruộng(Điều kiện: a>0; b>0; \(a\ge b\))
Vì chu vi của thửa ruộng là 40m nên ta có phương trình:
2(a+b)=40
hay a+b=20(1)
Vì diện tích của thửa ruộng là 64m2 nên ta có phương trình:
ab=64(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a+b=20\\ab=64\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=20-b\\\left(20-b\right)b=64\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=20-b\\b^2-20b+64=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=20-b\\\left(b-16\right)\left(b-4\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}a=20-16=4\\a=20-4=16\end{matrix}\right.\\\left[{}\begin{matrix}b=16\\b=4\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=16\\b=4\end{matrix}\right.\)(thỏa ĐK)
Vậy: Chiều dài và chiều rộng của thửa đất lần lượt là 16m và 4m