Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi quãng đường AB là x (x>0)km
thời gian đi hết quãng đường AB là \(\dfrac{x}{30} h\)
quãng đường người đó đi lúc về dài 15+x km
thời gian về trên quãng đường đó \(\dfrac{15+x}{40}h\)
vì thời gian về ít hơn tg đi là 20p=\(\dfrac{1}{3}\)h nên ta có
\(\dfrac{x}{30}-\dfrac{15+x}{40}=\dfrac{1}{3}\)
giải pt x=85
vậy quãng đường AB dài 85 km
Gọi x (km) là quãng đường người đó đi về ( x>0)
Thời gian người đó đi từ A đến B : x : 30 = \(\dfrac{x}{30}\) (km/h)
Thời gian người đó đi về bằng con đường khác: x : 40 = \(\dfrac{x}{40}\) (km/h)
Vì lúc về người đó đi con đường khác về nên ít hơn thời gian đi là
20 phút (= \(\dfrac{1}{3}giờ\)) nên ta có phương trình
\(\dfrac{x}{30}-\dfrac{x}{40}=\dfrac{1}{3}\)
\(\dfrac{4x}{120}-\dfrac{3x}{120}=\dfrac{40}{120}\)
⇒ 4x -3x = 40
x= 40 ( km )
Quãng đường AB dài: 40 + 15 = 55 ( km )
Vậy quãng đường AB dài 55 km
Gọi vận tốc đi,là v1 thời gian đi ; về lần lượt là t1 ; t2 (v1 ; t1 ; t2 > 0)
=> vận tốc về v1 - 5
Đổi 30 phút = 1/2 giờ
Ta có t2 - t1 = 1/2
<=> \(\frac{S}{v_1-5}-\frac{S}{v_1}=\frac{1}{2}\)
<=> \(\frac{180}{v_1-5}-\frac{180}{v_1}=\frac{1}{2}\)
<=> \(\frac{1}{v_1-5}-\frac{1}{v_1}=\frac{1}{360}\)
\(\Leftrightarrow\frac{5}{\left(v_1-5\right)v_1}=\frac{1}{360}\)
<=> (v1 - 5).v1 = 1800
<=> (v1)2 - 5.v1 = 1800
<=> (v1)2 - 45.v1 + 40v1 - 1800 = 0
<=> v1(v1 - 45) + 40(v1 - 45) = 0
<=> (v1 + 40)(v1 - 45) = 0
<=> \(\orbr{\begin{cases}v_1=-40\left(\text{loại}\right)\\v_1=45\left(\text{tm}\right)\end{cases}}\)
Vậy vận tốc lúc đi là 45 km/h
Thời gian xe máy từ A đến B với vận tốc 35km/h là
x/35 (h)
Thời gian người đó đi với vận tốc là 40km/h là
x/40 (h)
Lúc về người đó đi với vận tốc là 40km/h nên thời gian về nhanh hơn thời gian đi là 30 phút = 1/2 giờ nên
x/35 - x/40 = 1/2
=) 8x / 280 - 7x/280 = 140/280
=) x = 140
vậy AB = 140 km
Gọi x (km) là quãng đường AB :
ĐK : x > 0
Thời gian đi : \(\dfrac{x}{30}\left(h\right)\)
Thời gian về : \(\dfrac{x+15}{40}\left(h\right)\)
Vì thời gian về ít hơn thời gian đi 20 phút nên ta có pt :
\(\dfrac{x}{30}-\dfrac{x+15}{40}=\dfrac{1}{3}\)
\(\Leftrightarrow4x-3\left(x+15\right)=40\)
\(\Leftrightarrow4x-3x-45=40\)
\(\Leftrightarrow x=85\left(N\right)\)
Vậy : ...
Vận tốc lúc về :
\(50+10=60\left(\dfrac{km}{h}\right)\)
Quãng đường AB :
\(s=v.t=60.0,5=30\left(km\right)\)
Gọi độ dài quãng đường \(AB\) là \(x\left(x>0\right)\left(km\right)\)
Vận tốc lúc về của xe máy là: \(50+10=60\left(km/h\right)\)
Theo đề bài ta có phương trình:
\(\dfrac{x}{50}-\dfrac{x}{60}=0,5\)
\(\Leftrightarrow x=150\) (TMĐK)
Vậy quãng đường \(AB\) dài \(150km\).
Gọi thời gian người đi xe máy đi từ A đến B là x
Ta có phương trình : \(40x=30\left(x+1\right)\)
\(\Leftrightarrow40x=30x+30\Leftrightarrow40x-30x=30\)
\(\Leftrightarrow10x=30\Leftrightarrow x=30\div10=3\left(h\right)\)
=> Độ dài quãng đường AB là : \(40x=40.3=120\left(km\right)\)