K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2015

a)\(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}+\frac{1}{2^{49}}\)

\(A=1-\frac{1}{2^{50}}<1\)

Vậy \(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}<1\)

b)\(B=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}\)

\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\)

\(3B-B=2B=1-\frac{1}{3^{100}}\)

\(B=\frac{1-\frac{1}{3^{100}}}{2}\)

\(1-\frac{1}{3^{100}}<1\)nên\(\frac{1-\frac{1}{3^{100}}}{2}<\frac{1}{2}\)

Vậy \(B=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}<\frac{1}{2}\)

c) \(C=\frac{1}{4^1}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{999}}+\frac{1}{4^{1000}}\)

\(4C=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{998}}+\frac{1}{4^{999}}\)

\(4C-C=3C=1-\frac{1}{4^{1000}}\)

\(C=\frac{1-\frac{1}{4^{1000}}}{3}\)

\(1-\frac{1}{4^{1000}}<1\)nên\(\frac{1-\frac{1}{4^{1000}}}{3}<\frac{1}{3}\) 

Vậy \(C=\frac{1}{4^1}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{999}}+\frac{1}{4^{1000}}<\frac{1}{3}\)

 

22 tháng 12 2016

Bạn Detective_conan giải đúng đấy!

23 tháng 8 2023

1) \(5^{199}< 5^{200}=25^{100}\)

\(3^{300}=27^{100}>25^{100}\)

\(\Rightarrow3^{300}>5^{199}\)

\(\Rightarrow\dfrac{1}{3^{300}}< \dfrac{1}{5^{199}}\)

2)  a) \(107^{50}=\left(107^2\right)^{25}=11449^{25}\)

\(73^{75}=\left(73^3\right)^{25}=389017^{25}>11449^{25}\)

\(\Rightarrow107^{50}< 73^{75}\)

b) \(54^4< 5^{12}< 21^{12}\Rightarrow54^4< 21^{12}\)

23 tháng 8 2023

Giúp mình với

23 tháng 8 2023

a -35/50 = -7/10

b  510/2805 = 2/11

c  119/126

B2

-2/3= -8/12 , -1/4= -3/12

-8/12<-3/12 nên -2/3<-1/4

b 2/3  5/6

12/18 và 15/18

12/18<15/18

nên 14/21<60/72

23 tháng 8 2023

bài 1 :

a) = -7/10

b) = 510/2805 = 2/11

c) = 17/18