K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NM
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
LT
0
TQ
23 tháng 12 2017
\(x^3-4x^2y+x^2-y-1=y^3+x^2-x^2y-3xy^2-y\)
\(\left(x-y\right)^3=-1\)
<=>y=x-1
thay vào pt đầu được
\(-3x^3+5x^2-x=0\)
\(x=\left[{}\begin{matrix}\dfrac{5+\sqrt{13}}{6}\\\dfrac{5-\sqrt{13}}{6}\\0\end{matrix}\right.\)
ND
0
TN
17 tháng 1 2017
Bài 1:Áp dụng C-S dạng engel
\(\frac{3}{xy+yz+xz}+\frac{2}{x^2+y^2+z^2}=\frac{6}{2\left(xy+yz+xz\right)}+\frac{2}{x^2+y^2+z^2}\)
\(\ge\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=\left(\sqrt{6}+\sqrt{2}\right)^2>14\)
\(\hept{\begin{cases}x^2-4x+3=0\\x^2+xy+y^2=1\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(x-1\right)\left(x-3\right)=0\\x^2+xy+y^2=1\end{cases}}\)
\(\Leftrightarrow\left(I\right)\hept{\begin{cases}x=1\\x^2+xy+y^2=1\end{cases}\left(h\right)\left(II\right)\hept{\begin{cases}x=3\\x^2+xy+y^2=1\end{cases}}}\)
Giải hệ (I) \(\hept{\begin{cases}x=1\\x^2+xy+y^2=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\1+y+y^2=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y^2+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y\left(y+1\right)=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=0\end{cases}\left(h\right)\hept{\begin{cases}x=1\\y=-1\end{cases}}}\)
Giải hệ (II)\(\hept{\begin{cases}x=3\\x^2+xy+y^2=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\9+3y+y^2=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=3\\y^2+3y+8=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\\left(y+\frac{3}{2}\right)^2+\frac{23}{4}=0\end{cases}}\)hệ vô nghiệm