\(\sqrt{1+10x+25x^2}=-1-5x\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2020

Với \(x\ge-\frac{1}{2}\)

2f(x) = \(2\sqrt{\left(2x+1\right)\left(x+2\right)}+4\sqrt{x+3}-4x\)

\(=-\left(2x+1\right)+2\sqrt{\left(2x+1\right)\left(x+2\right)}-\left(x+2\right)-\left(x+3\right)+4\sqrt{x+3}-4+10\)

\(=-\left(\sqrt{2x+1}-\sqrt{x+2}\right)^2-\left(\sqrt{x+3}-2\right)^2+10\le10\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x+1=x+2\\x+3=4\end{cases}}\Leftrightarrow x=1\)

=> min 2f(x) = 10 tại x = 1

=> min f(x) = 5 tại x = 1

21 tháng 12 2020

\(P=\frac{1}{\sqrt{x}+1}+\frac{10}{2\sqrt{x}+1}-\frac{5}{2x+3\sqrt{x}+1}\)

\(=\frac{1}{\sqrt{x}+1}+\frac{10}{2\sqrt{x}+1}-\frac{5}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{2\sqrt{x}+1+10\left(\sqrt{x}+1\right)-5}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{2\sqrt{x}+1+10\sqrt{x}+10-5}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{6}{\sqrt{x}+1}\)

b) Để P nguyên tố thì  \(\frac{6}{\sqrt{x}+1}\) nguyên tố 

Để \(P\inℕ^∗\) thì  \(\sqrt{x}+1\inƯ\left(6\right)\) 

Mà P nguyên tố \(\Rightarrow\frac{6}{\sqrt{x}+1}=\left\{2;3\right\}\Rightarrow\sqrt{x}+1=\left\{2;3\right\}\)

Với \(\sqrt{x}+1=2\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)

Với \(\sqrt{x}+1=3\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)

Vậy ...........

13 tháng 5 2017

Ta chứng minh được:

\(0\le x:y\le1\)

\(\Rightarrow x\ge x^2;y\ge y^2;xy\ge0\)

\(P^2=8+5\left(x+y\right)+2\sqrt{16+20\left(x+y\right)+25xy}\)

\(P^2\ge8+5\left(x^2+y^2\right)+2\sqrt{16+20\left(x^2+y^2\right)}\)

\(P^2\ge8+5+2\sqrt{16+20}=25\)

\(\Rightarrow P\ge5\)

Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}x=0;y=1\\x=1;y=0\end{cases}}\)

NV
20 tháng 7 2020

\(a=\sqrt{25x^2-10x+1+16}=\sqrt{\left(5x-1\right)^2+16}\ge\sqrt{16}=4\)

\(a_{min}=4\) khi \(5x-1=0\Leftrightarrow x=\frac{1}{5}\)

\(b=\sqrt{x^2-10x+25+5}=\sqrt{\left(x-5\right)^2+5}\ge\sqrt{5}\)

\(b_{min}=\sqrt{5}\) khi \(x=5\)

\(c=\sqrt{-16x^2-8x-1+4}=\sqrt{4-\left(4x+1\right)^2}\le\sqrt{4}=2\)

\(c_{max}=2\) khi \(x=-\frac{1}{4}\)

6 tháng 11 2016

chắc gõ dấu + nhưng quên ấn Shift thành dấu = r`

\(\sqrt{4x^2+4x+1}+\sqrt{25x^2+10x+1}\)

\(=\sqrt{\left(2x+1\right)^2}+\sqrt{\left(5x+1\right)^2}\)

\(=\left|2x+1\right|+\left|5x+1\right|\ge\frac{3}{5}\)

Dấu = khi \(x=-\frac{1}{5}\)

6 tháng 11 2016

vào đây xem câu TL bạn nhé

https://www.youtube.com/watch?v=fvGaHwKrbUc

20 tháng 9 2019

khó quá đây là toán lớp mấy

19 tháng 9 2019

Bài 3:

Có:\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

True?

4 tháng 1 2017

Đặt \(\left(\sqrt{x},\sqrt{y},\sqrt{z}\right)=\left(a,b,c\right)\) với a,b,c là các số không âm.

Khi đó ta có \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\) và ta cần tìm giá trị lớn nhất của biểu thức \(N=abc\)

Ta có \(\frac{1}{1+a}=\left(1-\frac{1}{1+b}\right)+\left(1-\frac{1}{1+c}\right)=\frac{b}{b+1}+\frac{c}{c+1}\ge2\sqrt{\frac{bc}{\left(b+1\right)\left(c+1\right)}}\)

Tương tự \(\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(a+1\right)\left(c+1\right)}}\) , \(\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(a+1\right)\left(b+1\right)}}\)

Nhân theo vế được \(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)

\(\Rightarrow abc\le\frac{1}{8}\) hay max N = 1/8 . Bạn tự tìm giá trị x,y,z