Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|x|=1<=>x=1 hoặc x=-1
+)x=1=>2x4+3x2+5=2.14+3.12+5=10
+)x=-1=>2x4+3x2+5=2.(-1)4+3.(-1)2+5=10
Vậy A=10
\(\left(x-\frac{3}{5}\right).\left(x+\frac{2}{7}\right)< 0\)
\(\Rightarrow\hept{\begin{cases}x-\frac{3}{5}< 0\\x+\frac{2}{7}>0\end{cases}\text{hoặc}\hept{\begin{cases}x-\frac{3}{5}>0\\x+\frac{2}{7}< 0\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x< \frac{3}{5}\\x>-\frac{2}{7}\end{cases}\text{hoặc}\hept{\begin{cases}x>\frac{3}{5}\\x< -\frac{2}{7}\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}-\frac{2}{7}< x< \frac{3}{5}\\x\in\varnothing\end{cases}}\)
\(\Rightarrow-\frac{2}{7}< x< \frac{3}{5}\)
\(\Rightarrow x=0\)
Vậy x = 0
\(\left(x-\frac{3}{5}\right)\cdot\left(x+\frac{2}{7}\right)< 0\)
TH1 : \(\Rightarrow\hept{\begin{cases}x-\frac{3}{5}< 0\\x+\frac{2}{7}>0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}x< \frac{3}{5}\\x>-\frac{2}{7}\end{cases}}\) \(\Rightarrow\text{ }-\frac{2}{7}< x< \frac{3}{5}\)
TH2 : \(\Rightarrow\hept{\begin{cases}x-\frac{3}{5}>0\\x+\frac{2}{7}< 0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}x>\frac{3}{5}\\x< -\frac{2}{7}\end{cases}}\) \(\Rightarrow\text{ Không xảy ra}\)
Vì \(x\in Z\text{ }\Rightarrow\text{ }x=0\)
<=>±x-3=±-3-x
=>x-3=3-x
để 2 vế = nhau thì kq fai =0
=>x=3
thử lại x-3=0=3-3
Câu 1: Giá trị của x thỏa mãn
|x+2,37|+|y−5,3|=0
Để GTBT bằng 0 thì |x+2,37| = 0 và |y−5,3| = 0
-> x = -2,37 , y = 5,3
Vậy x = -2,37
Câu 2: Giá trị của y thỏa mãn
−|2x+\(\frac{4}{7}\)|−|y−1,37| = 0
-> |2x+\(\frac{4}{7}\) = 0 -> x = \(-\frac{2}{7}\)
-> |y−1,37| = 0 -> y = 1,37
Vậy y = 1,37
\(3x-2y+1=0\Rightarrow y=\frac{3x+1}{2}\)
Do y nguyên nên \(\frac{3x+1}{2}\in Z\Rightarrow x=2k+1\)
Khi đó \(P=\left|x\right|+\left|\frac{3x+1}{2}\right|\), ta tiến hành phá dấu trị tuyệt đối của P.
Với \(x\le-\frac{1}{3}\) do x nguyên nên ta có thể coi như \(x\le-1\)
Với \(x\le-1\Rightarrow P=-x-\frac{3x+1}{2}=-\frac{5x+1}{2}\ge2.\)
Khi đó minP = 2 khi x = -1, y = -1.
Với \(-\frac{1}{3}< x< 0\) không có giá trị x nguyên thỏa mãn.
Với \(x\ge0,\) do \(x=2k+1\Rightarrow\) ta có thể coi \(x\ge1\)
Với \(x\ge1\Rightarrow P=x+\frac{3x+1}{2}=\frac{5x+1}{2}\ge3\)
Vậy \(minP=3\) khi \(x=1\Rightarrow y=2\)
Tóm lại \(minP=2\) khi x = -1, y = -1.
|3x - 1| = 32
=> |3x - 1| = 9
=> 3x - 1 = 9 hoặc 3x - 1 = -9
=> 3x = 10 hoặc 3x = -8
=> x = 10/3 hoặc x = -8/3
Mà x < 0
=> x = -8/3