K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2017

Xét  − sin x + 2 cos x + 4 = 0

Ta thấy − 1 2 + 2 2 < 4 2  nên phương trình vô nghiệm.

Do đó − sin x + 2 cos x + 4 ≠ 0 .

Như vậy,  y = 2 sin x + cos x + 3 − sin x + 2 cos x + 4

⇔ y − sin x + 2 cos x + 4 = 2 sin x + cos x + 3

⇔ sin x 2 + y + cos x 1 − 2 y + 3 − 4 y = 0

Để phương trình có nghiệm thì  2 + y 2 + 1 − 2 y 2 ≥ 3 − 4 y 2

⇔ 5 y 2 + 5 ≥ 16 y 2 − 24 y + 9

⇔ 11 y 2 − 24 y + 4 ≤ 0

⇔ 2 11 ≤ y ≤ 2

Chọn đáp án D.

18 tháng 5 2017

Hàm số lượng giác, phương trình lượng giác

Hàm số lượng giác, phương trình lượng giác

31 tháng 8 2016

a)y=2cos(x+π/3)

-1<=cos(x+π/3)<=1

<=>-2<=2cos(x+π/3)<=2

--->min=-2,max=2

31 tháng 8 2016

không có điều kiện hả bạn ?

12 tháng 9 2016

heo me tim gtnn gtln cua bieu thuc:asinx + bcosx (a,b la hang so,a^2+b^2=/o)? | Yahoo Hỏi & Đáp

12 tháng 9 2016

cám ơn bn nhìu nha 

23 tháng 5 2017

a) Do \(-1\le sinx\le1,\forall x\in R\).
Nên giá trị lớn nhất của \(y=3-4sinx\) bằng \(3-4.\left(-1\right)=7\)khi \(sinx=-1\)\(\Leftrightarrow x=-\dfrac{\pi}{2}+k\pi\).
Giá trị nhỏ nhất của \(y=3-4sinx\) bằng \(3-4.1=-1\) đạt được khi \(sinx=1\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\).

23 tháng 5 2017

b) \(y=2-\sqrt{cosx}\) xác định khi \(0\le cosx\le1\) .
Giá trị lớn nhất của \(y=2-\sqrt{cosx}=2-\sqrt{0}=2\) khi \(cosx=0\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\).
Giá trị nhỏ nhất của \(y=2-\sqrt{cosx}=2-\sqrt{1}=1\) khi \(cosx=1\Leftrightarrow x=k2\pi\).

Tham khảo:

12 tháng 2 2019

31 tháng 3 2017

a) với mọi x thuộc tập xác định của hàm số đã cho ta có

0 ≤ cosx ≤ 1 => y = 2√cosx + 1 ≤ 3.

Giá trị y = 3 đạt được khi cosx = 1 ⇔ x = k2π, k ∈ Z, do đó max y = 3.

b) ta có -1 ≤ sinx ≤ 1, ∀x => 2 ≥ -2sinx ≥ -2 => 1 ≤ y = 3 – 2sinx ≤ 5, ∀x .

Giá trị y = 5 đạt được khi sinx = -1 ⇔ x = −π2+k2π−π2+k2π . k ∈ Z.

Giá trị y = 1 đạt được khi sinx = 1 ⇔ x = π2+k2ππ2+k2π, k ∈ Z.

Vậy max y = 5 ; min y = 1.