Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
1)
\(a,\) \(A=4x^2+4x+11\)
\(=\left(4x^2+4x+1\right)+10=\left(2x+1\right)^2+10\ge10\)
Dấu "=" xảy ra \(\Leftrightarrow\left(2x+1\right)^2=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy : min \(A=10\Leftrightarrow x=-\frac{1}{2}\)
b) \(C=x^2-2x+y^2-4y+7\)
\(=\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow x=1,y=2\)
Vậy : \(minC=2\Leftrightarrow x=1,y=2\)
2,
a) \(A=5-8x-x^2\)
\(=-\left(x^2+8x+16\right)+21=-\left(x+4\right)^2+21\le21\)
Dấu "=" xảy ra \(\Leftrightarrow x=-4\)
b) \(B=5-x^2+2x-4y^2-4y\)
\(=-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\)
Dấu "=" xảy ra \(\Leftrightarrow x=1,y=-\frac{1}{2}\)
a)\(A=-5x^2-4x+1\)
\(=\frac{9}{5}-\frac{4}{5}-5x^2-4x\)
\(=\frac{9}{5}-\left(5x^2+4x+\frac{4}{5}\right)\)
\(=\frac{9}{5}-5\left(x^2+\frac{4x}{5}+\frac{4}{25}\right)\)
\(=\frac{9}{5}-5\left(x+\frac{2}{5}\right)^2\le\frac{9}{5}\)
Dấu = khi \(-\left(x+\frac{2}{5}\right)^2=0\Leftrightarrow x+\frac{2}{5}=0\Leftrightarrow x=-\frac{2}{5}\)
Vậy \(Max_A=\frac{9}{5}\Leftrightarrow x=-\frac{2}{5}\)
bài này yêu cầu tìm GTNN (Min)sao bạn lại ghi là max vậy
1,a, \(\left(2x+1\right)\left(4x^2-2x+1\right)-8x\left(x^2+2\right)=17\)
\(\Leftrightarrow8x^3+1-8x^3-16x=17\)
\(\Leftrightarrow-16x=16\)
\(\Leftrightarrow x=-1\)
\(b,x^2-2x+5\left(x-2\right)=0\)
\(\Leftrightarrow x\left(x-2\right)+5\left(x-2\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}}\)
2,\(M=x^2+2x+6=x^2+2x+1+5=\left(x+1\right)^2+5\ge5\)
Dấu "=" xảy ra <=> x + 1 = 0
<=> x = -1
Vậy \(M_{min}=5\Leftrightarrow x=-1\)
5.\(C\text{ó}x^2-12=0\Rightarrow x^2=12\Rightarrow x=\sqrt{12}ho\text{ặc}x=-\sqrt{12}\)
Mà x>0\(\Rightarrow x=\sqrt{12}\)
6.Vì x-y=4\(\Rightarrow\left(x-y\right)^2=x^2-2xy+y^2=x^2-10+y^2=4^2=16\Rightarrow x^2+y^2=26\)
Có \(\left(x+y\right)^2=x^2+2xy+y^2=26+10=36=6^2=\left(-6\right)^2\)
Vì xy>0 và x>0 =>y>0=>x+y>0=>x+y=6
7. \(3x^2+7=\left(x+2\right)\left(3x+1\right)\)
\(3x^2+7=3x^2+7x+2\)
\(3x^2+7-3x^2-7x-2=0\)
-7x+5=0
-7x=-5
\(x=\frac{5}{7}\)
8.\(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)
\(\left(2x+1\right)^2-\left(2x+4\right)^2=9\)
(2x+1-2x-4)(2x+1+2x+4)=9
-3(4x+5)=9
4x+5=-3
4x=-8
x=-2
Còn câu 9 và 10 để mình nghiên cứu đã
đặt A=x^2+y^2-x+6x+15
=x^2+y^2+5x+15
=(x^2+5x)+y^2+15
=(x^2+2x.2,5^2+2,5^2)+y^2+15-2,5^2
=(x+2,5)^2+y^2+35/4 >/ 35/4
vậy Min A=35/4 <=> x+2,5=0=> x=-5/2 ,y^2=0=> y=0