Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
By C-S's ine: \(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow a^2+b^2+c^2\ge\frac{\left(\frac{3}{2}\right)^2}{3}=\frac{\frac{9}{4}}{3}=\frac{3}{4}\)
Khi \(a=b=c=\frac{1}{2}\)
Câu 1:
a: \(P=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x+15}{x-9}\cdot\dfrac{\sqrt{x}+3}{3}\)
\(=\dfrac{-3\sqrt{x}+15}{\sqrt{x}-3}\cdot\dfrac{1}{3}=\dfrac{-\sqrt{x}+5}{\sqrt{x}-3}\)
b: Thay \(x=11-6\sqrt{2}\) vào P, ta được:
\(P=\dfrac{-\left(3-\sqrt{2}\right)+5}{3-\sqrt{2}-3}=\dfrac{-3+\sqrt{2}+5}{-\sqrt{2}}\)
\(=\dfrac{2-\sqrt{2}}{-\sqrt{2}}=-\sqrt{2}+1\)
quy đồng nhân cả tử với mẫu với 2007 ta có
A=\(\frac{2007x^2-2.2007x+2007^2}{2007^2x^2} =\frac{x^2-2.2007x+2007^2+2006x^2}{2007^2x^2}=\frac{(x-2007)^2+2006x^2}{2007^2x^2} \)
=\(\frac{(x-2007)^2}{2007^2x^2}+\frac{2006x^2}{2007^2x^2}=\frac{2006}{2007^2}+ \frac{(x-2007)^2}{2007^2x^2} \)
Min A=\(\frac{2006}{2007^2}\)<=>x=2007
\(B=x^2-2x+y^2-4x+7=x^2-6x+9+y^2-2=\left(x-3\right)^2+y^2-2\)vì \(\left(x-3\right)^2\ge0\) và \(y^2\ge0\) nên \(B\ge-2\)
đẳng thức xảy ra khi và chỉ khi \(x=3\) và \(y=0\)
vậy MIN B = -2 tại x=3 và y=0
a) Vì M(1;0) thuộc đường thẳng mx - 5y = 7
Thay x = 1 ; y = 0 ta có :
m.1 - 5.0 = 7 => m = 7
Vậy m = 7 thì ..............
b) Vì A(2;3) thuộc đường thẳng ...............
Thay x = 2 ; y= 3 ta có :
( m - 1 ).2 + ( m + 1 ).3 = 2m+ 1
=> 2m - 2 + 3m + 3 = 2m + 1
=> 5m + 1 = 2m + 1
=> m = 0
Vậy m = 0 thì .............