Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(x^2+2xy+y^2\right)+\left(x^2-4x+4\right)+2016\)
\(B=\left(x+y\right)^2+\left(y-2\right)^2+2016\)
Vậy Min B =2016 <=> x=-2;y=2
Đặt \(A=3x^2+y^2+2xy+4x\)
\(\Leftrightarrow A=y^2+2xy+x^2+2x^2+4x+2-2\)
\(\Leftrightarrow A=\left(x+y\right)^2+2\left(x+1\right)^2-2\)
Vì \(\left(x+y\right)^2\ge0;2\left(x+1\right)^2\ge0\)
\(\Rightarrow\left(x+y\right)^2+2\left(x+1\right)^2-2\ge-2\)
Dấu = xảy ra khi \(\hept{\begin{cases}x+y=0\\x+1=0\end{cases}\Rightarrow}\hept{\begin{cases}y=1\\x=-1\end{cases}}\)
Vậy Min A=-2 khi \(y=1;x=-1\)
\(3x^2+y^2+2xy+4x\)
\(=x^2+2xy+y^2+2x^2+4x+2-2\)
\(=\left(x+y\right)^2+2.\left(x+1\right)^2-2\ge-2\)
Dấu bằng xảy ra khi
\(\hept{\begin{cases}x=-y\\x=-1\end{cases}\Leftrightarrow\hept{\begin{cases}y=1\\x=-1\end{cases}}}\)
Vậy Min \(3x^2+y^2+2xy+4x\)=2 khi x=-1;y=1
<=> yx2+2xy+2y=x2+2x+2 (1)
<=>(y-1)x2+2x(y-1)+2y-2=0
delta'=(y-1)2-2(y-1)2=-(y2-2y+1)=-y2+2y-1
để phương trình (1) có nghiệm thì delta' phải lớn hơn hoặc bằng 0
=> y=1
=> min y=1
\(x^2-2x+y^2-4x+7=x^2-2x+1+y^2-4x+4+2\)
=\(\left(x-1\right)^2+\left(y-2\right)^2+2\) \(\ge2\) dau = xay ra\(\Leftrightarrow x=1,y=2\)
\(\)vay min =2
mk k hiểu cách bn kia làm bừa theo cách này vậy
x^2 - 6x +7 +y^2 <=>(x-3)^2 +y^2 -2 >= -2
dấu bằng xáy ra khi x =3 y =0 min = -2 hay 2 j đó
( sai thf thui nha bn)