K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2016

\(x^{2016}\ge0\)

\(\Rightarrow x^{2016}+5\ge5\)

\(\Rightarrow\left(x^{2016}+5\right)^3\ge5^3\ge125\)

Dấu ''='' xảy ra khi x = 0

\(Min=125\Leftrightarrow x=0\)

5 tháng 12 2016

Phương An ahihi đc rồi oaoa

20 tháng 6 2018

Giải:

Ta có:

\(\left\{{}\begin{matrix}\left|x+3\right|\ge x+3\\\left|x-2\right|\ge0\\\left|x-5\right|\ge5-x\end{matrix}\right.\)

\(\Leftrightarrow\left|x+3\right|+\left|x-2\right|+\left|x-5\right|\ge x+3+5-x\)

\(\Leftrightarrow\left|x+3\right|+\left|x-2\right|+\left|x-5\right|\ge3+5\)

\(\Leftrightarrow\left|x+3\right|+\left|x-2\right|+\left|x-5\right|\ge8\)

\(\Leftrightarrow P_{Min}=8\)

Dấu "=" xảy ra:

\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy ...

20 tháng 6 2018

Do : | \(x+3\) | + | \(x-5\) | = | x + 3| + | 5 - x | ≥ | x + 3 + 5 - x | = 8

| x - 2 | ≥ 0

⇒ | \(x+3\) | + | \(x-5\) | + | x - 2 | ≥ 8

\(P_{Min}=8\) ⇔ - 3 ≤ x ≤ 5 và x = 2

16 tháng 9 2018

D=(x-1)(x+5)(x-3)(x+7)

=(x2+4x-5)(x2+4x-21)

=(x2+4x-5)2-16(x2+4x-5)

=[(x2+4x-5)2-16(x2+4x-5)+64]-64>=-64

21 tháng 5 2020

x=-6 thì D có giá trị nhỏ nhất là: -70

7 tháng 10 2017

Ta có :

\(M=\left|x+3\right|+\left|x-5\right|=\left|x+3\right|+\left|5-x\right|\)

Áp dụng BĐT :

\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)

\(\Rightarrow M\ge\left|x+3+5-x\right|=8\)

Dấu = xảy ra khi \(\left\{{}\begin{matrix}x+3\ge0\\5-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge-3\\x\le5\end{matrix}\right.\)

Vậy GTNN của \(M=8\) xảy ra khi \(-3\le x\le5\)

7 tháng 10 2017

x=8

16 tháng 9 2018

\(D=\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+7\right)\)

\(D=\left(x-1\right)\left(x+5\right)\left(x-3\right)\left(x+7\right)\)

\(D=\left(x^2+4x-5\right)\left(x^2+4x-21\right)\)

Đặt \(t=x^2+4x-13\) ta được:

\(D=\left(t+8\right)\left(t-8\right)\)

\(D=t^2-64\)

\(D=\left(x^2+4x-13\right)^2-64\ge-64\)

Vậy GTNN của D là -64 khi x = \(-2+\sqrt{17}\) hoặc x = \(-2-\sqrt{17}\)

28 tháng 6 2016

\(\left(x^2+x+1\right)\left(x^2+x-1\right)\)

\(=\left(x^2+x\right)^2-1\ge-1\)

28 tháng 6 2016

(x^2+x + 1) (x^2 +x-1)
=(x^2+x)^2-1 >= -1

28 tháng 9 2018

9.

hđt số 2 => x=30

Câu 2:

\(A=3\left(2x+9\right)^2-1>=-1\)

Dấu '=' xảy ra khi x=-9/2

Câu 9:

=>(x-30)^2=0

=>x-30=0

=>x=30

Câu 10:

\(=2x^2+6x-4x-12-2x^2-2x=-12\)

20 tháng 2 2016

Ta có

P=(x-1)(x-6)(x-3)(x-4)+5

<=>(x2-7x+6)(x2-7x+12)+5

<=>(x2-7x+9-3)(x2-7x+9+3)+5

=>(x2-7x+9)2-9+5

=>Pmin=-4

16 tháng 4 2018

Đặt: \(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(A=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)

\(A=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(A=\left(x^2+5x\right)^2-6^2\)

\(A=\left(x^2+5x\right)^2-36\)

Ta có: ( x2 + 5x)2 \(\ge0\) với mọi x thuộc R

=> \(A=\left(x^2+5x\right)^2-36\ge36\) với mọi x thuộc R

=> MinA = -36 khi x = 0 hoặc x = -5

16 tháng 4 2018

p/s: \(A=\left(x^2+5x\right)^2-36\ge-36\) với mọi x thuộc R

nãy vội quá ghi thiếu-.-

31 tháng 7 2018

Câu hỏi của TH - Toán lớp 8 - Học toán với OnlineMath tham kahr