Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để giá trị của biểu thức trên nhỏ nhất thì ( x2 + 5)2 phải nhỏ nhất.
Mà để ( x2 + 5)2 nhỏ nhất thì x2 + 5 nhỏ nhất
x2 + 5 >= 5
x2 >= 0
Dấu "=" xảy ra khi x = 0. Vậy giá trị nhỏ nhất của biểu thức bằng : ( 0 +5)2 + 4 = 29 với x =0
\(Q=19,5-\left|1,5-x\right|\le19,5\)
\(\Rightarrow\) \(Max\)\(Q=19,5-0=19,5\)
\(\Rightarrow x=1,5\)
Vậy Max Q=19,5 khi x=1,5
Ta có:|20092007x+2010|>0 với mọi x
=>GTNN của biểu thức bằng 0<=>|20092007x+2010|=0<=>20092007x=-2010
<=>x=-2010/20092007
ta thấy: 2007 lớn hơn hoặc bằng 0
\(\left(1-2.x\right)^2\) lớn hơn hoặc bằng 0
dấu = xảy ra khi:a.b lớn hơn hoặc bằng 0
2007+\( \left(1-2.x\right)^2\) >hoặc =2007
dấu = xảy ra khi:
N=2007 và \(\left(1-2.x\right)^2\) = 0
1-2.x=0
2.x=1
x=\(\frac{1}{2}\)
vậy N có giá trị lớn nhất là 2007 khi x=\(\frac{1}{2}\)
GTLN của N=\(\frac{1}{2007}\)khi x=\(\frac{1}{2}\)
k mik nha
A=|x-2008|+|2009-x|+|y-2010|+|x-2011|+2011
≥|x-2008+2009-x|+|y-2010|+|x-2011|+2011
= |y-2010|+|x-2011|+2012≥2012
Dấu = xảy ra khi : {y−2010=0x−2011=0{y−2010=0x−2011=0
<=> {y=2010x=2011{y=2010x=2011
Vay GTNN cua A=2012 khi {x=2011;y=2010
\(Do\)\(\left|2009^{2007}x+2010\right|\ge0\)
\(\Rightarrow\left|2009^{2007}x+2010\right|\)nhỏ nhất \(=0\)
Vậy \(\left|2009^{2007}x+2010\right|\)nhỏ nhất =0 khi \(x=\frac{2010}{2009^{2007}}\)