Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=9x-3x2
B=-(3x2-9x)=-3(x2-3x)=-3(x2-2.1,5x+2,25-2,25)=-3(x-1,5)2+6,75
=>Bmax=6,75 xấp xỉ 6,8
tick giùm mình nha! :))
\(B=14+2x-2x^2=-2\left(x^2-x-7\right)=-2\left(x^2-2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\frac{29}{4}\right)=-2\left[\left(x-\frac{1}{2}\right)^2-\frac{29}{4}\right]=-2\left(x-\frac{1}{2}\right)^2+\frac{29}{2}\)Vì \(\left(x-\frac{1}{2}\right)^2\ge0\left(x\in R\right)\)
nên \(-2\left(x-\frac{1}{2}\right)^2\le0\left(x\in R\right)\)
dso đó \(-2\left(x-\frac{1}{2}\right)^2+\frac{29}{2}\le\frac{29}{2}\left(x\in R\right)\)
Vậy \(Max_B=\frac{29}{2}\)khi \(x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
B lớn nhất khi -B nhỏ nhất
Ta có: -B=2x2-2x-14
=(x2-2.1/2.x+1/4)+(x2-2.1/2.x+1/4)-14-2.1/4
=(x-1/2)2 . 2 -29/2
Ta có: (x-1/2)>=0 với mọi x
=>(x-1/2).2-29/2>=-29/2 với mọi x
=>-B>=-29/2 với mọi x
=>B<=29/2 với mọi x
Vậy MaxB=29/2 khi x=1/2
\(P=14-\left(2x-5\right)^2\)
Vì: \(-\left(2x-5\right)^2\le0\)
=> \(14-\left(2x-5\right)^2\le14\)
Dấu bằng xảy ra khi \(2x-5=0\Leftrightarrow x=2,5\)
Vậy GTLN của P la 14 khi x=2,5
\(\frac{x^9-1}{x^9+1}=7\)=>x9-1=7x9+1
=>x9=\(\frac{-8}{6}\)
=>(x9)2=(\(\frac{-8}{6}\))2
=>x18=\(\frac{16}{9}\)=>..................................
1/. PT <=> \(\frac{13-x}{x+3}+\frac{6\left(x^2+1\right)}{\left(x^4+x^2\right)-\left(9x^2+9\right)}-\frac{3\left(x+2\right)}{\left(x^2+2x\right)+\left(3x+6\right)}-\frac{2}{x-3}=0\)
<=> \(\frac{13-x}{x+3}+\frac{6\left(x^2+1\right)}{x^2\left(x^2+1\right)-9\left(x^2+1\right)}-\frac{3\left(x+2\right)}{x\left(x+2\right)+3\left(x+2\right)}-\frac{2}{x-3}=0\)
<=> \(\frac{13-x}{x+3}+\frac{6\left(x^2+1\right)}{\left(x^2+1\right)\left(x^2-9\right)}-\frac{3\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}-\frac{2}{x-3}=0\)
<=>\(\frac{\left(13-x\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{6}{\left(x-3\right)\left(x+3\right)}-\frac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=0\) (1)
ĐKXĐ: \(x\ne3vàx\ne-3\)
(1) => \(13x-39-x^2+3x+6-3x+9-2x-6=0\)
<=> \(x^2-11x+30=0\)
<=> (x2-5x) -(6x - 30) = 0
<=> x(x - 5) -6 (x - 5) = 0
<=> (x-5) (x - 6) = 0
<=> x = 5 hay x = 6 (nhận )
Vậy pt đã cho có tập nghiệm S = {5;6}