K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2016

Nhân vế đầu đc hằng đẳng thức.

Tách ra đc:(x^2+4x)^2-25 lớn hơn hoặc bằng -25

9 tháng 8 2016

Dấu bằng xảy ra <=> x= 0 hoặc x= -4.

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

5 tháng 11 2015

\(M=x^2+4x+5\)

\(M=\left(x^2+2x.2+4\right)+1\)

\(M=\left(x+2\right)^2+1\)

Mà \(\left(x+2\right)^2\ge0\)

nên \(\left(x+2\right)^2+1\ge1\)

Vậy GTNN của biểu thức M là 1

3 tháng 11 2016

Ta có: \(M=x^2+4x+5=\left(x^2+4x+4\right)+1=\left(x+2\right)^2+1\ge1\)

Dấu "=" xảy ra khi : \(\left(x+2\right)^2=0\Rightarrow x+2=0\Rightarrow x=-2\)

Vậy \(M_{min}=1\) khi \(x=-2\)

3 tháng 11 2016

Ta có :

M = x2+4x+5 = (x2 + 2.2.x + 22) + 1

= (x + 2)2 + 1

Do (x+2)2 lớn hơn hoặc bằng 0 => M lớn hơn hoặc bằng 1 => M đạt giá trị nhỏ nhất <=> M = 1

Khi đó : (x + 2)2 + 1 = 1 <=> x + 2 = 0 <=> x = -2

Vậy giá trị nhỏ nhất của M là 0 tại x = -2

26 tháng 8 2018

ta có:\(A=x^2-4x+5\)

\(\Leftrightarrow A=x^2-2.x.2+2^2-4+5\)

\(\Leftrightarrow A=\left(x-2\right)^2+1\)

Do \(\left(x-2\right)^2\ge0\) với mọi x (dấu "=" xảy ra \(\Leftrightarrow x=2\))

\(\Rightarrow\left(x-2\right)^2+1\ge1\) hay \(A\ge1\)(dấu "=" xảy ra\(\Leftrightarrow x=2\))

vậy \(A_{min}=1\) tại \(x=2\)

Ta có:\(B=-x^2+4x+5\)

\(\Leftrightarrow B=-\left(x^2-4x-5\right)\)

\(\Leftrightarrow B=-\left(x^2-2.x.2+2^2-4-5\right)\)

\(\Leftrightarrow B=-\left[\left(x-2\right)^2-5\right]\)

\(\Leftrightarrow B=-\left(x-2\right)^2+5\)

Do \(-\left(x-2\right)^2\le0\) với mọi x (dấu "=" xảy ra \(\Leftrightarrow x=2\))

\(\Rightarrow-\left(x-2\right)^2+5\le5\) hay \(B\le5\) (dấu "=" xảy ra \(\Leftrightarrow x=2\))

vậy \(B_{max}=5\) tại \(x=2\)

26 tháng 8 2018

A=\(x^2-4x+5=x^2-4x+4+1\)

\(=\left(x-2\right)^2+1\)

\(\left(x-2\right)^2\ge0\)

\(\Rightarrow\left(x-2\right)^2+1\ge1\)

\(\Rightarrow A\ge1\)

Dấu = xảy ra khi

x-2=0

\(\Rightarrow x=2\)

vậy GTNN của A=1 khi x=2

B=\(-x^2+4x+5=-\left(x^2-4x-5\right)\)

\(\Rightarrow-\left(x-2\right)^2+9\)

\(-\left(x-2\right)^2\le0\)

\(\Rightarrow-\left(x-2\right)^2+9\le9\)

\(\Rightarrow B\le9\)

Dấu = xảy ra khi \(-\left[-\left(x-2\right)^2+9\right]\)

đạt GTNN

suy ra x-2=0

suy ra x=2

1 tháng 12 2016

GTNN :

B=4x2+4x+11

= (2x)2+2*x*2+22+7

=(2x+2)2+7>= 7

dấu ''='' sảy ra khi 2x+2=0

                        => x = -1

vậy GTNN của biểu thức B là 7 tại x = -1

         

30 tháng 9 2018

\(B=4x^2+4x+11\)

\(=4x^2+4x+1+10\)

\(=\left(2x+1\right)^2+10\ge10\)

Dau "=" xay ra  <=>  \(x=-\frac{1}{2}\)

Vay.....

25 tháng 7 2016

a) A= x+ 4x + 5

=x2+4x+4+1

=(x+2)2+10+1=1

Dấu = khi x+2=0 <=>x=-2

Vậy Amin=1 khi x=-2

b) B= ( x+3 ) ( x-11 ) + 2016

=x2-8x-33+2016

=x2-8x+16+1967

=(x-4)2+19670+1967=1967

Dấu = khi x-4=0 <=>x=4

Vậy Bmin=1967 <=>x=4

Bài 2:

a) D= 5 - 8x - x

=-(x2+8x-5)

=21-x2+8x+16

=21-x2+4x+4x+16

=21-x(x+4)+4(x+4)

=21-(x+4)(x+4)

=21-(x+4)20+21=21

Dấu = khi x+4=0 <=>x=-4

10 tháng 10 2017

Bài 1:

c)C=x2+5x+8

=x2+5x+\(\left(\dfrac{5}{2}\right)^2\)+\(\dfrac{7}{4}\)

=\(\left(x+\dfrac{5}{2}\right)^2\)+\(\dfrac{7}{4}\)\(\ge\dfrac{7}{4}\)

Vậy \(C_{min}=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{5}{2}\)

18 tháng 3 2018

Ta có:\(A=x^2-4x+\frac{1}{x^2-4x+4}+5\)\(=x^2-4x+4+\frac{1}{x^2-4x+4}+1\)

Áp dụng BĐT Cauchy ta có:\(A\ge2\sqrt{\left(x^2-4x+4\right).\frac{1}{x^2-4x+4}}+1=2+1=3\)

\(\Rightarrow GTNN\) của A là 3 đạt được khi \(x^2-4x+4=\frac{1}{x^2-4x+4}\Rightarrow\left(x-2\right)^4=1\Rightarrow\orbr{\begin{cases}x-2=1\\x-2=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

18 tháng 3 2018

cảm ơn bạn

25 tháng 9 2016

1. Đặt \(t=x^2,t\ge0\)

\(3x^4+4x^2-2\ge3.0+4.0-2=-2\)

=> MIN = -2 khi x = 0

2. \(\left(x^2+2\right)\left(x+1\right)=0\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+2=0\\x+1=0\end{array}\right.\)

Vì \(x^2+2\ge2>0\) => Vô nghiệm

Vậy x+1 = 0 => x = -1

3. Kết quả là 10

4. Ko rõ đề