Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Để A đạt GTNN \(\Rightarrow\)\(^{\left(x-2\right)^2}\) là số tự nhiên nhỏ nhất
\(\Rightarrow\)\(\left(x-2\right)^2\) =0
\(\Rightarrow\) x-2=0
\(\Rightarrow\) x=2
Khi đó: A=(2-2)^2+=3
Vậy A đạt GTNN là 3 tại x=2
b)Để B đạt GTNN, suy ra
5(3-x)^2 là số tự nhiên nhỏ nhất
\(\Rightarrow5\left(3-x\right)^2=0\)
\(\Rightarrow\) x=3
Khi đó: B=4
Vậy B đạt GTNN là 4 tại x=3c) Ta có
c) TA có: (2x-3)^2\(\ge\)0 với mọi x thuộc Z
(2-y) ^ 4\(\ge\)0 với mọi y thuộc Z
Từ 2 điều trên, để A có GTNN, suy ra:\(\hept{\begin{cases}\\\left(2-y\right)^4=0\Rightarrow y=2\end{cases}\left(2x-3\right)^2=0\Rightarrow x=\frac{3}{2}}\)
Khi đó C=0 tại x=3/2, y=2
\(A=\left(x-2\right)^2+3\)
Do \(\left(x-2\right)^2\)> hoặc bằng 0
=>A > hoặc bằng 3
Vậy GTNN của A là 3 <=>\(x-2=0\)
=>x=2
a) \(A=\left(x+4\right)^2+\left|y-5\right|-7\)
Ta thấy : \(\left(x+4\right)^2\ge0\)
\(\left|y-5\right|\ge0\)
\(\Rightarrow\left(x+4\right)^2+\left|y-5\right|-7\ge-7\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+4\right)^2=0\\\left|y-5\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-4\\y=5\end{cases}}\)
Vậy \(minA=-7\Leftrightarrow\hept{\begin{cases}x=-4\\y=5\end{cases}}\)
b) \(B=\left(x-4\right)^2+\left|y-5\right|+9\)
Ta thấy : \(\left(x-4\right)^2\ge0\)
\(\left|y-5\right|\ge0\)
\(\Rightarrow\left(x-4\right)^2+\left|y-5\right|+9\ge9\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-4\right)^2=0\\\left|y-5\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=4\\y=5\end{cases}}\)
Vậy \(minB=9\Leftrightarrow\hept{\begin{cases}x=4\\y=5\end{cases}}\)
\(\left(x-2016\right)^2\ge0\Rightarrow A_{min}=0+2017=2017\)khi đó : \(\left(x-2016\right)^2=0\Rightarrow x-2016=0\Rightarrow x=2016\)
Vậy \(A\)đạt giá trị nhỏ nhất là 2017 khi x=2016
Chúc bạn học giỏi,
\(\left(x-3\right)^2+\left|y+5\right|^2-4\ge-4\)
=> GTNN của biểu thức là -4
<=> x - 3 = y + 5 = 0
<=> x = 0 + 3; y = 0 - 5
<=> x = 3; y = -5.