Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ giả thiếu suy ra: (x2+y2)2-4(x2+y2)+3=-x2 =<0
Do đó: A2-4A+3 =<0
<=> (A-1)(A-3) =<0
<=> 1 =<A=<3
Vậy MinA=1 <=> x=0; y=\(\pm\)1
MaxA=3 <=> x=0; y=\(\pm\sqrt{3}\)
\(A=f\left(x,y\right)\)
Coi y là tham số \(\rightarrow A=f\left(x\right)\)
\(A=f\left(x\right)=2x^2-4xy+5y^2-6x-2y+13\)
\(f'\left(x\right)=4x-4y-6\)
Coi x là tham số \(\rightarrow A=f\left(y\right)\)
\(f'\left(y\right)=10y-4x-2\)
\(f'\left(x\right)=f'\left(y\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=\frac{17}{6}\\y=\frac{4}{3}\end{matrix}\right.\)
\(\Rightarrow Min_A=f\left(\frac{17}{6};\frac{4}{3}\right)=\frac{19}{6}\)
Chơi cả cực trị hàm nhiều biến cho lớp 9 luôn :D
Cứ nhân tung biến đổi thôi:
\(A=x^2-4xy+4y^2+x^2-6x+9+y^2-2y+1+3\)
\(A=2x^2-4xy+5y^2-6x-2y-13\)
\(A=2\left(x^2+y^2+\frac{9}{4}-2xy-3x+3y\right)+3\left(y^2-\frac{8}{3}y+\frac{16}{9}\right)+\frac{19}{6}\)
\(A=2\left(x-y-\frac{3}{2}\right)^2+3\left(y-\frac{4}{3}\right)^2+\frac{19}{6}\ge\frac{19}{6}\)
\(\Rightarrow A_{min}=\frac{19}{6}\) khi \(\left\{{}\begin{matrix}x=y+\frac{3}{2}=\frac{17}{6}\\y=\frac{4}{3}\end{matrix}\right.\)
Đặt \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)
Ta có \(a,b,c>0;a^2+b^2+c^2=1\)
và \(P=\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}+\frac{c}{a^2+b^2}\)
\(=\frac{a^2}{a\left(1-a^2\right)}+\frac{b^2}{b\left(1-b^2\right)}+\frac{c^2}{c\left(1-c^2\right)}\)
Áp dụng bất đẳng thức Cô-si cho 3 số dương ta có
\(a^2\left(1-a^2\right)^2=\frac{1}{2}.2a^2.\left(1-a^2\right)\left(1-a^2\right)\)
\(\le\frac{1}{2}\left(\frac{2a^2+1-a^2+1-a^2}{3}\right)^3=\frac{4}{27}\)
\(\Rightarrow a\left(1-a^2\right)\le\frac{2}{3\sqrt{3}}\Rightarrow\frac{a^2}{a\left(1-a^2\right)}\ge\frac{3\sqrt{3}}{2}a^2\)(1)
Tương tự \(\frac{b^2}{b\left(1-b^2\right)}\ge\frac{3\sqrt{3}}{2}b^2\)(2)
\(\frac{c^2}{c\left(1-c^2\right)}\ge\frac{3\sqrt{3}}{2}c^2\)(3)
từ (1),(2) và (3) ta có \(P\ge\frac{3\sqrt{3}}{2}\left(a^2+b^2+c^2\right)=\frac{3\sqrt{3}}{2}\)
Vậy Min của \(P=\frac{3\sqrt{3}}{2}\)Khi x=y=z\(=\sqrt{3}\)
1. Áp dụng Min - cốp - ski, ta được: \(\sqrt{\frac{9}{\left(a+b\right)^2}+c^2}+\sqrt{\frac{9}{\left(b+c\right)^2}+a^2}+\sqrt{\frac{9}{\left(c+a\right)^2}+b^2}\)\(\ge\sqrt{\left(\frac{3}{a+b}+\frac{3}{b+c}+\frac{3}{c+a}\right)^2+\left(a+b+c\right)^2}\)\(\ge\sqrt{\left(\frac{27}{2\left(a+b+c\right)}\right)^2+\left(a+b+c\right)^2}\)(Bunyakovsky dạng phân thức)
Đặt \(t=a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\)thì ta cần chứng minh: \(\sqrt{\frac{729}{4t^2}+t^2}\ge\frac{3\sqrt{13}}{2}\Leftrightarrow\frac{729}{4t^2}+t^2\ge\frac{117}{4}\)\(\Leftrightarrow\frac{\left(t+3\right)\left(t-3\right)\left(2t+9\right)\left(2t-9\right)}{4t^2}\ge0\)*đúng bởi \(t-3\le0;t+3>0;2t+9>0;2t-9< 0;4t^2>0\)*
Đẳng thức xảy ra khi t = 3 hay a = b = c = 1
2. Ta có: \(\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}-3=\frac{\left(x^2-y^2\right)^2\left(x^4+y^4+x^2y^2\right)}{x^2y^2\left(x^2+y^2\right)^2}\ge0\)\(\Rightarrow\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge3\)
Đẳng thức xảy ra khi x = y
TL ;
\(A=\frac{\left(x-1\right)^2}{ }\) + \(\frac{\left(y-1\right)^2}{x}\)+ \(\frac{\left(GTNN-1^2\right)}{y}\)
\(A=\left(x-1\right)^2+y2+GTNN+1_{ }\)
\(A=x+2^2:xyz+2^2\frac{x}{y}\)
\(A=x^2xy1zx\)
\(A=x^2+y6\)
\(GTNN=12x\)