Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(y=2x+\frac{1}{x^2}-2\)
hay \(y=x+x+\frac{1}{x^2}-2\ge3\sqrt[3]{\frac{x.x.1}{x^2}}-2=3-2=1\)
vậy giá trị nhỏ nhất của y là 1
Dấu bằng xảy ra khi \(x=\frac{1}{x^2}\Leftrightarrow x=1\)
ta có hàm số
\(y=2\left(x^2-2mx+m^2\right)-\left(2m^2+m-5\right)\ge-\left(2m^2+m-5\right)\)
vậy \(-\left(2m^2+m-5\right)=5\Leftrightarrow2m^2+m=0\Leftrightarrow\orbr{\begin{cases}m=0\\m=-\frac{1}{2}\end{cases}}\)
Vậy có hai giá trị của m
\(A=x^2-y^2-2y-1\)
\(=x^2-\left(y+1\right)^2=\left(x-y-1\right)\left(x+y+1\right)\)
\(=\left(93-6-1\right)\left(93+6+1\right)=86\cdot100=8600\)
B k hiểu đề là j
Lời giải:
Áp dụng BĐT AM-GM ngược dấu:
\(1728=(3x+3y)(2x+2z)(2y+2z)\leq \left(\frac{5x+5y+4z}{3}\right)^3\)
\(\Rightarrow 5x+5y+4z\geq 36\)
Áp dụng bất đẳng thức Cauchy-Schwarz:
\(18P=(5x^2+5y^2+2z^2)(5+5+8)\geq (5x+5y+4z)^2\geq 36^2\)
\(\Rightarrow P\geq 72\)
Vậy \(P_{\min}=72\Leftrightarrow (x,y,z)=(2,2,4)\)
À, rồi, hiểu ý bạn. Tức là bạn muốn CM với \(x,y,z\in\mathbb{R}\), không cần đk dương đúng không. Hôm qua thấy Thắng cmt nên chột dạ cho luôn \(x,y,z>0\)
Lời giải:
BĐT Cauchy-Schwarz và BĐT AM-GM ngược dấu với hai số vẫn luôn đúng cho trường hợp số thực: \(xy\leq \left(\frac{x+y}{2}\right)^2\Leftrightarrow (x-y)^2\geq 0\) \(\forall x,y\in\mathbb{R}\)
Giờ ghép cặp thôi:
\((3x+3y)(2x+2z)\leq \left(\frac{5x+3y+2z}{2}\right)^2\)
\((3x+3y)(2y+2z)\leq \left(\frac{5y+3x+2z}{2}\right)^2\)
\((x+z)(y+z)\leq \left(\frac{x+y+2z}{2}\right)^2\)
Bất kể vế trái có thừa số âm thừa số dương nhưng vì tích của \((x+y)(y+z)(z+x)>0\) nên khi nhân theo vế dấu không bị đổi, thu được:
\(47775744\leq (5x+3y+2z)^2(5y+3x+2z)^2(x+y+2z)^2\)
\(\leq \left(\frac{8x+8y+4z}{2}\right)^4(x+y+2z)^2\Rightarrow 2985984\leq (2x+2y+z)^4(x+y+2z)^2\)
Áp dụng Cauchy-Schwarz:
\((x^2+y^2+z^2)\geq \frac{(x+y+2z)^2}{6}\)
\(4x^2+4y^2+z^2\geq \frac{(2x+2y+z)^2}{3}\)
Giờ thì tất cả đều dương rồi. AM-GM ba số:
\(\Rightarrow \text{VT}\geq \frac{(x+y+2z)^2}{6}+\frac{(2x+2y+z)^2}{6}+\frac{2x+2y+z)^2}{6}\geq 3\sqrt[3]{\frac{(x+y+2z)^2(2x+2y+z)^4}{6^3}}\geq 72\)
\(A=5x^2+2y^2+4xy-2x+4y+2021\)
\(=4x^2+4xy+y^2+y^2+4y+4+x^2-2x+1+2016\)
\(=\left(2x+y\right)^2+\left(y+2\right)^2+\left(x-1\right)^2+2016\ge2016\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Vậy MinA=2016 khi \(\left\{\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
thử sức cùng toan10
= (2x +y)2 + (x-1)2 +(y+2)2 +2012 - 1-4
GTNN = 2007