Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: -|1,5-x| \(\le\)0
=>19,5-|1,5-x| \(\le\)19,5
Dấu "=" xảy ra khi x=1,5
Vậy GTLN của Q là 19,5 tại x=1,5
Ta có: \(\left|1,5-x\right|\ge0\)
=>19,5-\(\left|1,5-x\right|\ge19,5\)
Dấu "=" sảy ra khi:\(1,5-x=0\)
=> x=1,5
Mặt khác ta có:Q=19,5-\(\left|1,5-x\right|\)<=>19,5-\(\left|1,5-1,5\right|\)
=>Q=19,5-0=19,5
Vậy GTLN của Q=19,5 tại x=1,5.
Chúc bạn học tốt!
Ta có: |1,5 - x| \(\ge\) 0 (với mọi x)
=> 19,5 - |1,5 - x| \(\le\) 19,5 (với mọi x)
Vậy GTNN của Q là 19,5 khi và chỉ khi x = 1,5
\(\left|1,5-x\right|\ge0\)
\(\Rightarrow-\left|1,5-x\right|\le0\)
\(\Rightarrow Q=19,5-\left|1,5-x\right|\le19,5\forall x\)
Vậy, GTNN của Q = 19,5 khi x = 1,5
Để Q có giá trị lớn nhất thì Q phải lớn hơn hoặc bằng 19,5
Mà I1,5-xI là số tự nhiên=> x=1,5 thì I1,5-xI=0
Vậy giá trị lớn nhất của Q là 19,5 khi x=1,5
study well
\(Do\)\(\left|2009^{2007}x+2010\right|\ge0\)
\(\Rightarrow\left|2009^{2007}x+2010\right|\)nhỏ nhất \(=0\)
Vậy \(\left|2009^{2007}x+2010\right|\)nhỏ nhất =0 khi \(x=\frac{2010}{2009^{2007}}\)
Để giá trị của biểu thức trên nhỏ nhất thì ( x2 + 5)2 phải nhỏ nhất.
Mà để ( x2 + 5)2 nhỏ nhất thì x2 + 5 nhỏ nhất
x2 + 5 >= 5
x2 >= 0
Dấu "=" xảy ra khi x = 0. Vậy giá trị nhỏ nhất của biểu thức bằng : ( 0 +5)2 + 4 = 29 với x =0
TA CÓ: \(-\left|1,5-x\right|\le0\)VỚI MỌI x
\(\Rightarrow19.5-\left|1,5-x\right|\le19,5\)
DẤU "=" XẢY RA KHI VÀ CHỈ KHI 1,5-x=0
=>x=1,5
VẬY MAX Q=19,5 KHI VÀ CHỈ KHI x=1,5
Ta có: / 1,5 - x / \(\ge\)0 => -/ 1,5 - x / \(\le\)0 => Q = 19,5 - / 1,5 - x / \(\le\)19,5
Đẳng thức xảy ra khi: 1,5 - x = 0 => x = 1,5
Vậy giá trị lớn nhất của Q là 19,5 khi x= 1,5.
Ta có : \(\left|1,5-x\right|\ge0\) ( với mọi \(x\) )
\(\Rightarrow19,5-\left|1,5-x\right|\le19,5\) ( với mọi \(x\) )
Vậy \(GTNN\) của \(Q\) là \(19,5\) khi và chỉ \(x=1,5\)
Ta có: Q = 19,5 - I 1,5 - x l
Ta thấy: l 1,5 - x l > 0 với mọi x
=> Q = 19,5 - I 1,5 - x I < 19,5 với mọi x
Để Q có giá trị lớn nhất đạt được \(\Leftrightarrow\) Q = 19,5
\(\Leftrightarrow\) l 1,5 - x l = 0
\(\Leftrightarrow\) 1,5 - x = 0 => x = 1,5
Vậy MaxQ = 1,5 \(\Leftrightarrow\) x = 1,5
Chuk bn hok tốt!
Để \(\frac{2006}{\left|x-2013\right|+7}\) lớn nhất thì \(\left|x-2013\right|+7\) bé nhất
Đặt \(C=\left|x-2013\right|+7\)
Ta có:\(\left|x-2013\right|\ge0\)
\(\Rightarrow\left|x-2013\right|+7\ge7\)
\(\Rightarrow MinC=7\) khi x=2013
Ta có :
\(\left|2x-1\right|\ge0\)
\(\Rightarrow1+\left|2x-1\right|\ge1\)
\(\Rightarrow\frac{2}{1+\left|2x-1\right|}\le\frac{2}{1}=2\)
\(\Rightarrow1+\frac{2}{1+\left|2x-1\right|}\le3\)
\(\Rightarrow B_{max}=3\)
\(\Leftrightarrow\left|2x-1\right|=0\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy ...
Để B lớn nhất thì 2/1 + |2x - 1| lớn nhất
=> 1 + |2x - 1| nhỏ nhất
Mà 1 + |2x - 1| < hoặc = 1
Dấu" =" xảy ra khi và chỉ khi |2x - 1| = 0
=> 2x - 1 = 0
=> 2x = 1
=> x = 1/2
Vậy với x = 1/2 thì B lớn nhất = 1 + 2/1+1 = 1 + 1 = 2
\(Q=19,5-\left|1,5-x\right|\le19,5\)
\(\Rightarrow\) \(Max\)\(Q=19,5-0=19,5\)
\(\Rightarrow x=1,5\)
Vậy Max Q=19,5 khi x=1,5