Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, A = \(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{a^2\left(a+1\right)+\left(a+1\right)\left(a-1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)
b, Gọi UCLN(a2 + a - 1,a2 + a + 1) là d
Ta có: a2 + a - 1 \(⋮\)d
a2 + a + 1 \(⋮\)d
=> (a2 + a - 1) - (a2 + a + 1) \(⋮\)d
=> 2 \(⋮\)d => d = {1;-1;2;-2}
Mà a2 + a - 1 = a(a + 1) - 1 lẻ => d lẻ => d không thể bằng 2;-2 => d = {1;-1}
Vậy A tối giản
a) n khác 1
b) n-1(5) = -1;1;-5;5
n= 0; 2; -4;6
ai cung k hieu chỉ vai bạn gioi hieu moi thay
dc hay
Gọi UCLN(n+9,n-6)=d
Ta có:\(\hept{\begin{cases}n+9⋮d\\n-6⋮d\end{cases}}\)\(\Rightarrow n+9-\left(n-6\right)⋮d\Rightarrow15⋮d\)
\(\Rightarrow d\inƯ\left(15\right)=\left\{1,15,3,5\right\}\)
Với d=3 thì \(\hept{\begin{cases}n+9=3m\\n-6=3n\end{cases}}\)\(\Rightarrow\hept{\begin{cases}n=3m-9\\n=3n+6\end{cases}}\)
Với d=5 thì \(\hept{\begin{cases}n+9=5k\\n-6=5l\end{cases}}\)\(\Rightarrow\hept{\begin{cases}n=5k-9\\n=5l+6\end{cases}}\)
Với d=15 thì \(\hept{\begin{cases}n+9=15x\\n-6=15y\end{cases}}\)\(\Rightarrow\hept{\begin{cases}n=15x-9\\n=15y+6\end{cases}}\)
Để \(\frac{n+9}{n-6}\) tối giản thì d=1 nên \(d\ne3,d\ne5,d\ne15\) nên \(n\ne3m-9;n\ne3n+6;n\ne5k-9;n\ne5l+6;n\ne15x-9;n\ne15y+6\)
a: \(A=2018-\left|10-x\right|\le2018\)
Dấu '=' xảy ra khi x=10
\(B=-\left(x+2\right)^2+1999\le1999\)
Dấu '=' xảy ra khi x=-2
b: \(A=\left(2x-8\right)^2+3>=3\)
Dấu '=' xảy ra khi x=4
\(B=\left|x^2-25\right|-2017>=-2017\)
Dấu '=' xảy ra khi x=5 hoặc x=-5
5/3
A chắc chắn phải dương, vì cả tử và mẫu đều cùng dấu dương.
Do đó khi 2A lớn nhất thì A cũng lớn nhất.
\(2A=\frac{2\left|x\right|+10}{2\left|x\right|+3}=1+\frac{7}{2\left|x\right|+3}\)
Để 2A lớn nhất thì \(\frac{7}{2\left|x\right|+3}\) lớn nhất. 7 là số nguyên dương nên để phân số này lớn nhất thì 2|x|+3 là số dương bé nhất có thể.
|x| > 0
\(\Rightarrow\)2|x| > 0
\(\Rightarrow\)2|x|+ 3 > 3
\(\Rightarrow2A\) lớn nhất là \(1+\frac{7}{3}=\frac{10}{3}\)
Do đó A lớn nhất là \(\frac{10}{3}:2=\frac{5}{3}\)