K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2017

ko biết đúng hay sai âu nha bạn

\(\frac{2014}{2x^2-4x+2014}\\ =\frac{2014}{2\left(x-1\right)^2+2012}\left(1\right)\)

để (1) max

<=> 2(x-1)2 +2012 min

mà 2(x-1)2 \(\ge\) 0

<=> 2(x-1)2 +2012 \(\ge\) 2012

<=> 2(x-1)2 +2012 min = 2012 tại x = 1

=> (1) max = \(\frac{2014}{2012}=\frac{1007}{1006}\) tại x = 1

xem thử có đúng hem đi bạn

25 tháng 12 2016

2014/(2x^2-4x+2+2012)

=2014/2(x-1)^2+2012 bé hơn hoặc bằng 2014/2012

suy ra GTLN của biểu thức là 2014/2012 tại x=1

25 tháng 12 2016

\(x=\frac{1007}{1006}\)

17 tháng 12 2017

để 2014/(2x^2-4x+2014)LN

<=> 2x^2-4x+2014 NN

<=> x^2-2x+1007 NN

ta có x^2-2x+1007

=x^2-2x+1+1006

=(x-1)^2+1006

tc (x-1)^2>=0

<=>(x-1)^2+1006>=1006

vậy GTNN (x-1)^2+1006=1006<=>x-1=0

<=>x=1

vậy 2014/(2x^2 -4x+2014) đạt giá lớn nhất khi x=1

mk k bk là có đúng k nhé

nhưng bd mk hc là làm z

26 tháng 5 2016

\(A=\frac{2014}{2x^2-4x+2014}\)

Ta thấy : A lớn nhất  <=> \(2x^2-4x+2014\)đạt GTNN

Lại có : \(2x^2-4x+2014=2\left(x-1\right)^2+2012\ge2012\)

=> Min \(2x^2-4x+2014\)= 2012

=> Max A = \(\frac{2014}{2012}=\frac{1007}{1006}\Leftrightarrow x=1\)

25 tháng 2 2020

Bạn ghi đề lại được không ?? Mình không hiểu đề cho lắm ??

23 tháng 2 2017

\(Q=\frac{1}{x^2-2x+3}=\frac{1}{\left(x^2-2x+1\right)+2}=\frac{1}{\left(x-1\right)^2+2}\)

Để \(\frac{1}{\left(x-1\right)^2+2}\) max <=> \(\left(x-1\right)^2+2\) min

Mà \(\left(x-1\right)^2+2\ge2\) \(\forall x\)

\(\Rightarrow Q=\frac{1}{\left(x-1\right)^2+2}\ge\frac{1}{2}\)

Dấu "=" xảy ra <=> \(\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy \(Q_{MAX}=\frac{1}{2}\) tại \(x=1\)

24 tháng 4 2019

\(A=\frac{2x^2-4x+7}{x^2-2x+2}=\frac{2.\left(x^2-2x+2\right)+3}{x^2-2x+2}=2+\frac{3}{x^2-2x+1+1}=2+\frac{3}{\left(x-1\right)^2+1}\)

\(\text{Để A max}\Leftrightarrow\left(\frac{3}{\left(x-1\right)^2+1}\right)max\Leftrightarrow\left[\left(x-1\right)^2+1\right]min\)vì (x-1)2+1 > 0

\(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)

Vậy Max A=5 <=> x=1

24 tháng 4 2019

\(A=\frac{2x^2-4x+7}{x^2-2x+2}\)

\(A=\frac{2\left(x^2-2x+2\right)+3}{x^2-2x+2}\)

\(A=\frac{2\left(x^2-2x+2\right)}{x^2-2x+2}+\frac{3}{x^2-2x+2}\)

\(A=2+\frac{3}{x^2-2x+1+1}\)

\(A=2+\frac{3}{\left(x-1\right)^2+1}\le2+\frac{3}{0+1}=2+3=5\)

Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)