Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2014/(2x^2-4x+2+2012)
=2014/2(x-1)^2+2012 bé hơn hoặc bằng 2014/2012
suy ra GTLN của biểu thức là 2014/2012 tại x=1
để 2014/(2x^2-4x+2014)LN
<=> 2x^2-4x+2014 NN
<=> x^2-2x+1007 NN
ta có x^2-2x+1007
=x^2-2x+1+1006
=(x-1)^2+1006
tc (x-1)^2>=0
<=>(x-1)^2+1006>=1006
vậy GTNN (x-1)^2+1006=1006<=>x-1=0
<=>x=1
vậy 2014/(2x^2 -4x+2014) đạt giá lớn nhất khi x=1
mk k bk là có đúng k nhé
nhưng bd mk hc là làm z
\(A=\frac{2014}{2x^2-4x+2014}\)
Ta thấy : A lớn nhất <=> \(2x^2-4x+2014\)đạt GTNN
Lại có : \(2x^2-4x+2014=2\left(x-1\right)^2+2012\ge2012\)
=> Min \(2x^2-4x+2014\)= 2012
=> Max A = \(\frac{2014}{2012}=\frac{1007}{1006}\Leftrightarrow x=1\)
\(Q=\frac{1}{x^2-2x+3}=\frac{1}{\left(x^2-2x+1\right)+2}=\frac{1}{\left(x-1\right)^2+2}\)
Để \(\frac{1}{\left(x-1\right)^2+2}\) max <=> \(\left(x-1\right)^2+2\) min
Mà \(\left(x-1\right)^2+2\ge2\) \(\forall x\)
\(\Rightarrow Q=\frac{1}{\left(x-1\right)^2+2}\ge\frac{1}{2}\)
Dấu "=" xảy ra <=> \(\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy \(Q_{MAX}=\frac{1}{2}\) tại \(x=1\)
\(A=\frac{2x^2-4x+7}{x^2-2x+2}=\frac{2.\left(x^2-2x+2\right)+3}{x^2-2x+2}=2+\frac{3}{x^2-2x+1+1}=2+\frac{3}{\left(x-1\right)^2+1}\)
\(\text{Để A max}\Leftrightarrow\left(\frac{3}{\left(x-1\right)^2+1}\right)max\Leftrightarrow\left[\left(x-1\right)^2+1\right]min\)vì (x-1)2+1 > 0
\(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)
Vậy Max A=5 <=> x=1
\(A=\frac{2x^2-4x+7}{x^2-2x+2}\)
\(A=\frac{2\left(x^2-2x+2\right)+3}{x^2-2x+2}\)
\(A=\frac{2\left(x^2-2x+2\right)}{x^2-2x+2}+\frac{3}{x^2-2x+2}\)
\(A=2+\frac{3}{x^2-2x+1+1}\)
\(A=2+\frac{3}{\left(x-1\right)^2+1}\le2+\frac{3}{0+1}=2+3=5\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
ko biết đúng hay sai âu nha bạn
\(\frac{2014}{2x^2-4x+2014}\\ =\frac{2014}{2\left(x-1\right)^2+2012}\left(1\right)\)
để (1) max
<=> 2(x-1)2 +2012 min
mà 2(x-1)2 \(\ge\) 0
<=> 2(x-1)2 +2012 \(\ge\) 2012
<=> 2(x-1)2 +2012 min = 2012 tại x = 1
=> (1) max = \(\frac{2014}{2012}=\frac{1007}{1006}\) tại x = 1
xem thử có đúng hem đi bạn