K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2016

\(B=14+2x-2x^2=-\left(2x^2-2x-14\right)=-2\left(x^2-2x-7\right)\)

\(=-2\left(x^2-x+\frac{1}{4}-\frac{29}{4}\right)=-\left(x-\frac{1}{2}\right)^2+\frac{29}{4}\)

Vì: \(\left(x+\frac{1}{2}\right)^2\ge0\) với mọi x

=>\(-\left(x-\frac{1}{2}\right)^2\le0\)

=>\(-\left(x+\frac{1}{2}\right)^2+\frac{29}{4}\le\frac{29}{4}\)

Vậy GTLN của B là \(\frac{29}{4}\) khi x=\(-\frac{1}{2}\)

31 tháng 7 2016

B lớn nhất khi -B nhỏ nhất

Ta có: -B=2x2-2x-14

             =(x2-2.1/2.x+1/4)+(x2-2.1/2.x+1/4)-14-2.1/4

             =(x-1/2)2 . 2 -29/2

Ta có: (x-1/2)>=0 với mọi x

=>(x-1/2).2-29/2>=-29/2 với mọi x

=>-B>=-29/2 với mọi x

=>B<=29/2 với mọi x

Vậy MaxB=29/2 khi x=1/2       

8 tháng 10 2016

\(P=14-\left(2x-5\right)^2\)

Có: \(\left(2x-5\right)^2\ge0\Rightarrow14-\left(2x-5\right)^2\le14\)

Dấu = xảy ra khi: \(\left(2x-5\right)^2=0\Rightarrow2x-5=0\Rightarrow x=\frac{5}{2}\)

Vậy: \(Max_P=14\) tại \(x=\frac{5}{2}\)

8 tháng 10 2016

thanhs

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

31 tháng 7 2016

\(B=14+2x-2x^2=-2\left(x^2-x-7\right)=-2\left(x^2-2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\frac{29}{4}\right)=-2\left[\left(x-\frac{1}{2}\right)^2-\frac{29}{4}\right]=-2\left(x-\frac{1}{2}\right)^2+\frac{29}{2}\)Vì \(\left(x-\frac{1}{2}\right)^2\ge0\left(x\in R\right)\)

nên \(-2\left(x-\frac{1}{2}\right)^2\le0\left(x\in R\right)\)

dso đó \(-2\left(x-\frac{1}{2}\right)^2+\frac{29}{2}\le\frac{29}{2}\left(x\in R\right)\)

Vậy \(Max_B=\frac{29}{2}\)khi \(x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

31 tháng 7 2016

B lớn nhất khi -B nhỏ nhất

Ta có: -B=2x2-2x-14

             =(x2-2.1/2.x+1/4)+(x2-2.1/2.x+1/4)-14-2.1/4

             =(x-1/2)2 . 2 -29/2

Ta có: (x-1/2)>=0 với mọi x

=>(x-1/2).2-29/2>=-29/2 với mọi x

=>-B>=-29/2 với mọi x

=>B<=29/2 với mọi x

Vậy MaxB=29/2 khi x=1/2             

9 tháng 3 2020

a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)

\(\Rightarrow\left(2x-3\right)^2+91\ge91\)

hay A \(\ge91\)

Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)

<=> 2x-3=0

<=> 2x=3

<=> \(x=\frac{3}{2}\)

Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)

b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)

Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x+\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)

9 tháng 3 2020

\(C=2x^2+2xy+y^2-2x+2y+2\)

\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)

\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)

Ta có: 

\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)

\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)

hay C\(\ge\)1

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)

Vậy Min C=1 đạt được khi y=1 và x=0

4 tháng 7 2016

B3:\(\Rightarrow90.10^n-10^n.10^2+10^n.10-20\Rightarrow10^n.\left(90-10^2\right)+10^n.10-20\)

\(\Rightarrow10^n.\left(90-100\right)+10^n.10-20\Rightarrow-10.10^n+10^n.10-20\Rightarrow-20\)

4 tháng 7 2016

\(A=-\left(x^2-x+5\right)=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{19}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{19}{4}\right]\)

\(=-\left(x-\frac{1}{2}\right)^2-\frac{19}{4}\le-\frac{19}{4}\)

Vậy \(A_{min}=-\frac{19}{4}\Leftrightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)

14 tháng 8 2018

a) A= 2x2-8x+10 = 2(x-2)2+2\(\ge\)2\(\Leftrightarrow\)x=2

Vậy MinA=2 \(\Leftrightarrow\)x=2

b) B= -(x-1)2-(2y+1)2+7 \(\le\)7

Dấu = xảy ra khi x=1 và y=\(\frac{-1}{2}\)

Vậy MaxB=7 ....

14 tháng 8 2018

cảm ơn bạn nha

26 tháng 8 2020

A = x2 + 4x + 7

   = ( x2 + 4x + 4 ) + 3

   = ( x + 2 )2 + 3

( x + 2 )2 ≥ 0 ∀ x => ( x + 2 )2 + 3 ≥ 3

Đẳng thức xảy ra <=> x + 2 = 0 => x = -2

=> MinA = 3 <=> x = -2

B = 2x2 - 6x 

   = 2( x2 - 3x + 9/4 ) - 9/2

   = 2( x - 3/2 )2 - 9/2

2( x - 3/2 )2 ≥ 0 ∀ x => 2( x - 3/2 )2 -9/2 ≥ -9/2 

Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2

=> MinB = -9/2 <=> x = 3/2

C = -2x2 + 8x - 15

    = -2( x2 - 4x + 4 ) - 7

    = -2( x - 2 )2 - 7

-2( x - 2 )2 ≤ 0 ∀ x => -2( x - 2 )2 - 7 ≤ -7

Đẳng thức xảy ra <=> x - 2 = 0 => x = 2

=> MaxC = -7 <=> x = 2

20 tháng 7 2019

\(\text{a)}\left(2x-1\right)^2+x+2\)

\(=4x^2-4x+1+x+2\)

\(=4x^2-3x+3\)

\(=\left(4x^2-3x+\frac{9}{16}\right)+\frac{39}{16}\)

\(=\left(2x+\frac{3}{4}\right)^2+\frac{39}{16}\)

\(\text{Vì}\left(2x-\frac{3}{4}\right)^2\ge0\)

\(\text{nên }\left(2x-\frac{3}{4}\right)^2+\frac{39}{16}\ge\frac{39}{16}\)

Vậy \(GTNN=\frac{39}{16}\),dấu bằng xảy ra khi \(x=\frac{3}{8}\)

\(\text{b)}4-x^2+2x\)

\(=\left(-x^2+2x-1\right)+5\)

\(=-\left(x^2-2x+1\right)+5\)

\(=-\left(x-1\right)^2+5\)

\(\text{Vì }-\left(x-1\right)^2\le0\)

\(\text{nên }-\left(x-1\right)^2+5\le5\)

Vậy \(GTLN=5\), dấu bằng xảy ra khi \(x=1\)

\(\text{c)}4x-x^2\)

\(=\left(-x^2+4x-4\right)+4\)

\(=-\left(x^2-4x+4\right)-4\)

\(=-\left(x-4\right)^2-4\)

\(\text{Vì }-\left(x-4\right)^2\le0\)

\(\text{nên }-\left(x-4\right)^2-4\le-4\)

Vậy \(GTLN=-4\), dấu  bằng xảy ra khi \(x=4\)

\(a,\left(2x-1\right)^2+\left(x+2\right)=4x^2-4x+1+x+2\)

\(=4x^2-3x+3\)

\(=4x^2-2.2.\frac{3}{4}x+\left(\frac{3}{4}\right)^2-\left(\frac{3}{4}\right)^2+3\)

\(=\left(2x-\frac{3}{4}\right)^2+\frac{39}{16}\ge\frac{39}{16}\)

Dấu bằng xảy ra khi \(2x-\frac{3}{4}=0\Rightarrow x=\frac{3}{8}\)

Vậy \(x=\frac{3}{8}\)thì biểu thức đạt giá trị nhỏ nhất là \(\frac{39}{16}\)

\(b,4-x^2+2x=-\left(x^2-2x-4\right)\)

\(=-\left(\left(x-2\right)^2-8\right)\)

\(\left(x-2\right)^2-8\ge-8\)

\(-\left(\left(x-2\right)^2-8\right)\le8\)

Dấu bằng xảy ra khi \(x-2=0\Rightarrow x=2\)

Vậy \(x=2\)thì biểu thức đạt giá trị lớn nhất là 8 

\(c,4x-x^2=-\left(x^2-4x\right)\)

\(=-\left(\left(x-2\right)^2-4\right)\)

\(\left(x-2\right)^2-4\ge-4\)

\(\Rightarrow-\left(\left(x-2\right)^2-4\right)\le4\)

Dấu bằng xảy ra khi \(x-2=0\Rightarrow x=2\)

Vậy giá trị lớn nhất của biểu thức là 4 khi x = 2