K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 2 2016

\(A=-\left(x^2+y^2+3^2+2xy-6x-6y\right)-4\left(x^2-2x+1\right)-\left(y^2-4y+4\right)-3\)
\(A=-\left(x+y-3\right)^2-4\left(x-1\right)^2-\left(y-2\right)^2-3\le-3\)
Vậy Max A=-3 <=> x=1;y=2

25 tháng 2 2016

-20 chắn chắn

25 tháng 2 2016

Thank . Nhưng sai rồi đó bạn

29 tháng 2 2016

MAX =-3 . violympic vòng 15

29 tháng 2 2016

vào link này tham khảo nha http://olm.vn/hoi-dap/question/461515.html

4 tháng 11 2017

bằng 1 nha bạn

NV
1 tháng 3 2020

\(S=5x^2+y^2+2.\left(\sqrt{2}x\right)\left(\frac{y}{\sqrt{2}}\right)\le5x^2+y^2+2x^2+\frac{y^2}{2}\)

\(\Rightarrow S\le7x^2+\frac{3}{2}y^2=\frac{1}{2}\left(14x^2+3y^2\right)=\frac{2019}{2}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}14x^2+3y^2=2019\\y=2x\end{matrix}\right.\) \(\Rightarrow...\)

4 tháng 2 2016

min =1

max=3

 

21 tháng 8 2017

AI

K

CHO

MINH

VOI

CAM

ON

21 tháng 8 2017

AI

K

CHO

MINH

VOI

CAM

ON

9 tháng 3 2016

Ta có \(2xy\ge-\left(x^2+y^2\right)\to36=5x^2+5y^2+8xy\ge5x^2+5y^2+4\left(-x^2-y^2\right)=x^2+y^2.\)
Dấu bằng xảy ra khi \(x=-y=\pm3\sqrt{2}.\)  Vậy giá trị lớn nhất là 36.