Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Ta thấy:
\(\left(x-\frac{2}{5}\right)^2\ge0\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2\ge0\)
\(\left|2y+1\right|\ge0\)
\(\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|\ge0\)
\(\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|-2,5\ge-2,5\)
hay \(A\ge-2,5\)
Dấu "=" xảy ra khi \(\begin{cases}\left(x-\frac{2}{5}\right)^2=0\\\left|2y+1\right|=0\end{cases}\)
\(\Rightarrow\begin{cases}x-\frac{2}{5}=0\\2y+1=0\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{2}{5}\\2y=-1\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{2}{5}\\y=-\frac{1}{2}\end{cases}\)
Vậy GTNN của A là -2,5 đạt được khi \(\begin{cases}x=\frac{2}{5}\\y=-\frac{1}{2}\end{cases}\)
Câu 1 :
Ta có y = f(x) = 2x
Thay x = 2 vào công thức trên ta được :
y = 2 × 2 = 4
Vậy f(2) có giá trị là 4
Câu 2 :
Hệ số tỉ lệ k là \(\frac{1}{3}\)
Câu 3 :
Thay x = 9 vào công thức trên ta được :
y = \(\frac{2}{3}×9=6\)
Vậy y = 6
Câu 4 :
Nếu f(1) = 2 thì giá trị của x là 1.
Câu 5 :
Vì x, y tỉ lệ thuận với nhau theo hệ số tỉ lệ là \(\frac{1}{2}\) nên y = \(\frac{1}{2}×x\)
Thay x = 2 vào công thức ta được :
y = \(\frac{1}{2}×2=1\)
Vậy nếu x = 2 thì y = 1
Câu 6 : Điểm B thuộc đồ thị hàm số y = x
Chúc bạn thi tốt nhé!!!
(x-1)200+(y+2)300=0
(x-1)^200 > 0 ; (y+2)^300>0
=> (x-1)^200 = 0 và (y + 2)^300 = 0
=> x - 1 = 0 và y + 2 = 0
=> x = 1 và y = - 2
thay vào rồi tính như bình thường thôi
Vì \(\left(x-1\right)^{200}\ge0\forall x\); \(\left(y+2\right)^{300}\ge0\forall y\)
\(\Rightarrow\left(x-1\right)^{200}+\left(y+2\right)^{300}\ge0\)
mà \(\left(x-1\right)^{200}+\left(y+2\right)^{300}=0\)( giả thiết )
\(\Rightarrow\left(x-1\right)^{200}+\left(y+2\right)^{300}=0\)\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Thay \(x=1\)và \(y=-2\)vào biểu thức ta được:
\(P=2.1^{100}-5.\left(-2\right)^3+4=2-5.\left(-8\right)+4=2+5.8+4\)
\(=2+40+4=46\)
Câu 1) Giả sử P(x)=(3x-2)(x+3)=0
=> Th1: 3x-2=0
Th2:x+3=0
=> Th1:x=3/2
Th2: x=-3
=> Tập hợp của P(x)={3/2;-3)
Câu 2)Q(1)=1^2-3.1+2
=1-3+2=0
Câu 80:
Tổng của 3 đơn thức đó là:
\(2^3x^2yz+2x^2yz+\left(-5x^2yz\right)\)
\(=8x^2yz+2x^2yz-5x^2yz\)
\(=\left(8+2-5\right).x^2yz\)
\(=5.x^2yz\)
\(=5x^2yz.\)
Câu 59:
\(P\left(x\right)=5x^3+2x^4-x^2-5x^3-x^4+1+3x^2+5x^2\)
\(\Rightarrow P\left(x\right)=\left(5x^3-5x^3\right)+\left(2x^4-x^4\right)-\left(x^2-3x^2-5x^2\right)+1\)
\(\Rightarrow P\left(x\right)=x^4-\left(-7x^2\right)+1\)
\(\Rightarrow P\left(x\right)=x^4+7x^2+1.\)
Vậy đa thức \(P\left(x\right)=x^4+7x^2+1.\)
Chúc bạn học tốt!
TH1: a+b+c khác 0
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
\(\Rightarrow2+\frac{a+b-c}{c}=2+\frac{b+c-a}{a}=2+\frac{c+a-b}{b}\)
\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
\(\Rightarrow a=b=c\)
thay a=b=c vào B ta có:
\(B=\left(1+\frac{a}{a}\right)\cdot\left(1+\frac{a}{a}\right)\cdot\left(1+\frac{a}{a}\right)=2\cdot2\cdot2=8\)
TH2: a+b+c=0
=> c=-a-b
=>a=-b-c
=>b=-a-c
thay a,b,c vào B ta có:
\(B=\left(1+\frac{-\left(a+c\right)}{a}\right)\cdot\left(1+\frac{-\left(b+c\right)}{c}\right)\cdot\left(1+\frac{-\left(a+b\right)}{b}\right)\)
\(B=\left(-\frac{c}{a}\right)\cdot\left(-\frac{b}{c}\right)\cdot\left(-\frac{a}{b}\right)=-1\)
p/s: th2 ko chắc nhá
Câu 1: Đề thiếu
Câu 2: D
Câu 3: C
Câu 4: B
Câu 5: C