K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2016

ta co : 

x^2 -xy = 18 => x.x-x.y= 18 -> x( x-y) = 18 

theo đề bài : x-y = 3 => x.3= 18 => x= 6

26 tháng 6 2016

\(x^2-xy=-18\Leftrightarrow x\left(x-y\right)=-18\Leftrightarrow x\cdot3=-18\Rightarrow x=-6\).

26 tháng 6 2016

x^2 - xy=-18 (=) x.(x-y)=-18 (=)x.3=-18 (=)x=-6

21 tháng 2 2016

ta có: x^2-xy=-18

       x(x-y)=-18

        x.3=-18

         x=-6

25 tháng 7 2016

\(\left(\frac{9}{25}\right)^{-x}=\left(\frac{5}{3}\right)^{-6}\)

\(=>\left(\frac{3}{5}\right)^{-2x}=\left(\frac{5}{3}\right)^{-6}\)

\(=>\left(\frac{3}{5}\right)^{-2x}=\left(\frac{3}{5}\right)^6\)

\(=>-2x=6\)

\(=>x=-3\)

câu 2.

\(x^2-xy=-18\)

\(=>x\left(x-y\right)=-18\)

\(=>3x=-18\)

\(=>x=-6\)

26 tháng 12 2016

X=-6; y=-9

26 tháng 12 2016

x^2-xy=-18

x(x-y)=-18

Vì x-y=3, thay vào biểu thức trên ta được:

x*3=-18

x=-6

Vập x=-6

3 tháng 1 2017

Bài 2:

TH1: \(x\le-\frac{5}{2}\)

<=>\(-\left(x+\frac{5}{2}\right)+\frac{2}{5}-x=0\)<=>\(-x-\frac{5}{2}+\frac{2}{5}-x=0\)<=>\(-\frac{21}{10}-2x=0\)

<=>\(-2x=\frac{21}{10}\)<=>\(x=\frac{-21}{20}\)(loại)

TH2: \(-\frac{5}{2}< x\le\frac{2}{5}\)

<=>\(x+\frac{5}{2}+\frac{2}{5}-x=0\)<=>\(\frac{29}{10}=0\)(loại)

TH3: \(x>\frac{2}{5}\)

<=>\(x+\frac{5}{2}+x-\frac{2}{5}=0\)<=>\(2x+\frac{21}{10}=0\)<=>\(2x=-\frac{21}{10}\)<=>\(x=-\frac{21}{20}\)(loại)

Vậy không có số x thỏa mãn đề bài

3 tháng 1 2017

Bài 1:

Vì \(\left(x-2\right)^2\ge0\) nên\(\left(x-2\right)^2\le0\) khi \(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Bài 3:

Đặt \(\frac{x}{15}=\frac{y}{9}=k\Rightarrow\hept{\begin{cases}x=15k\\y=9k\end{cases}}\)

Theo đề bài: xy=15 <=> 15k.9k=135k2=15 <=> k2=1/9 <=> k=-1/3 hoặc k=1/3

+) \(k=-\frac{1}{3}\Rightarrow\hept{\begin{cases}x=\left(-\frac{1}{3}\right).15=-5\\y=\left(-\frac{1}{3}\right).9=-3\end{cases}}\)

+) \(k=\frac{1}{3}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}.15=5\\y=\frac{1}{3}.9=3\end{cases}}\)

Vậy ...........

25 tháng 2 2016

X-1/x+2=x-2/x+3

=>(x-1)(x+3)=(x+2)(x-2)

=>x(x+3)-1(x+3)=x(x-2)+2(x-2)

=>x^2+3x-x-3=x^2-2x+2x-4

=>x^2+2x-3=x^2-4

=>2x-3=-4=>x=-1/2=-0,5

 vậy...

25 tháng 2 2016

\(\frac{x-1}{x+2}=\frac{x-2}{x+3}\Leftrightarrow\left(x-1\right)\left(x+3\right)=\left(x-2\right)\left(x+2\right)\)

                       \(\Leftrightarrow x^2-x+3x-3=x^2-2x+2x-4\)

                      \(\Leftrightarrow x^2+2x-3=x^2-4\)

                       \(\Leftrightarrow x^2-x^2+2x=3-4\)

                      \(\Leftrightarrow2x=-1\Leftrightarrow x=-\frac{1}{2}\)

10 tháng 3 2016

<=>±x-3=±-3-x

=>x-3=3-x

để 2 vế = nhau thì kq fai =0

=>x=3

thử lại x-3=0=3-3

10 tháng 3 2016

x=3

k cho mink nhé

3 tháng 7 2015

\(\frac{37-x}{x+13}=\frac{3}{7}\)

=>7.(37-x)=3.(x+13)

<=>259-7x=3x+39

<=>3x+7x=259-39

<=>10x=220

<=>x=22

3 tháng 7 2015

\(\frac{37-x}{x+13}=\frac{3}{7}\Leftrightarrow\left(37-x\right).7=\left(x+13\right).3\Leftrightarrow259-7x=3x+39\)(nhân chéo)

\(\Leftrightarrow3x+7x=259-39\Rightarrow10x=220\Rightarrow x=220:10\Rightarrow x=22\)

Vậy x=22

Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)Câu 6: Có bao nhiêu...
Đọc tiếp

Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. 

Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)

Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)

Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)

Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)

Câu 6: Có bao nhiêu cặp số (x;y) thỏa mãn đẳng thức xy=x+y

Câu 7: Gọi A là tập hợp các số nguyên dương sao cho giá trị của biểu thức: \(\frac{2\sqrt{x}+3}{\sqrt{x}-1}\) là nguyên. Số phần tử của tập hợp A là...

Câu 8: Cho x;y là các số thỏa mãn \(\left(x+6\right)^2+\left|y-7\right|=0\) khi đó x+y=...

Câu 9: Phân số dương tối giản có mẫu khác 1, biết rằng tổng của tử và mẫu số bằng 18, nó có thể viết dưới dạng số thập phân hữu hạn. Có... phân số thỏa mãn 

 

0