Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề a,b bạn ghi mik ko hiểu
c)Ta có : \(x+y=a=>x^2+y^2+2xy=a^2\)
Mà \(x^2+y^2=b\)nên\(b+2xy=a^2=>xy=\frac{a^2-b}{2}\)
\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\)
Thay \(x+y=a\) ; \(x^2+y^2=b\)và \(xy=\frac{a^2-b}{2}\)ta có : \(x^3+y^3=a\left(b-\frac{a^2-b}{2}\right)=ab-\frac{a^3-ab}{2}\)
a) A=xy(x+y) - (x+y) = (x+y) (xy-1) = (-5+2) (-5.2 -1) =-3 . -11 = 33
b) B= xy (y-x)+2(x-y) =xy (y-x) - 2(y-x) =(y-x) (xy -2)= (-1/3 - -1/2) ( -1/2 . -1/3 -- 2)= 1/6 . -11/6 =-11/ 36
Dễ mà bạn
\(P=\left(x-y\right)\left(x^2+xy+y^2\right)-2y^3=x^3-y^3-2y^3=x^3-3y^3=\left(\frac{1}{2}\right)^3-3.\left(\frac{2}{3}\right)^3=\frac{-55}{72}\)
\(xy^2+x^2y+x+y=12\)
\(xy\left(x+y\right)+\left(x+y\right)=12\)
\(\left(x+y\right)\left(xy+1\right)=12\)
\(\left(x+y\right)\left(5+1\right)=12\)
\(\Rightarrow x+y=2\)
ta có \(x^2+y^2=\left(x+y\right)^2-2xy=2^2-2.5=-6\)
nhấn vô link nha bn
https://olm.vn/hoi-dap/detail/228510468302.html
P = ( xy + 1 ) ( x2y2 - xyt + 1 )
= x3y3 + 1
= \(\left(5.\frac{3}{5}\right)^3+1\)
= \(27+1\)
= 28
(x+y)(x2-xy+y2)+(x-y)(x2+xy+y2)
=x3-x2y+xy2+x2y-xy2+y3+x3+x2y+xy2-x2y-xy2-y3
=2x3
Thay x=3 ta có:
2x3=2 x 33=2x27=54
cảm ơn bạn