K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2016

x=11 suy ra 12=x+1 thay vào A ta có:

A=x^17- (x+1)x^16 + (x+1)x^15 - (x+1)x^14 + .....- (x+1)x^2+(x+1)x -1

= x^17 - x^17 -x^16 + x^16 + x^15 - x^15 - x^14 +.....- x^3 -x^2 + x^2 +x -1

= x-1= 11-1=10

6 tháng 9 2020

+) \(A=x^2+2x-9=x^2+2x+1-10=\left(x+1\right)^2-10\ge-10\)

Min A = -10 \(\Leftrightarrow x=-1\)

+) \(B=x^2+5x-1=x^2+5x+\frac{25}{4}-\frac{29}{4}=\left(x+\frac{5}{2}\right)^2-\frac{29}{4}\ge\frac{-29}{4}\)

Min B = -29/4 \(\Leftrightarrow x=\frac{-5}{2}\)

+) \(C=x^2+4x=x^2+4x+4-4=\left(x+2\right)^2-4\ge-4\)

Min C = -4 \(\Leftrightarrow x=-2\)

+) \(D=x^2-8x+17=x^2-8x+16+1=\left(x-4\right)^2+1\ge1\)

Min D = 1 \(\Leftrightarrow x=4\)

+) \(E=x^2-7x+1=x^2-7x+\frac{49}{4}-\frac{45}{4}=\left(x-\frac{7}{2}\right)-\frac{45}{4}\ge-\frac{45}{4}\)

Min E = -45/4 \(\Leftrightarrow x=\frac{7}{2}\)

6 tháng 9 2020

A = x2 + 2x - 9 

= ( x2 + 2x + 1 ) - 10

= ( x + 1 )2 - 10 ≥ -10 ∀ x

Đẳng thức xảy ra <=> x + 1 = 0 => x = -1

=> MinA = -10 <=> x = -1

B = x2 + 5x - 1

= ( x2 + 5x + 25/4 ) - 29/4

= ( x + 5/2 )2 - 29/4 ≥ -29/4 ∀ x

Đẳng thức xảy ra <=> x + 5/2 = 0 => x = -5/2

=> MinB = -29/4 <=> x = -5/2

C = x2 + 4x

= ( x2 + 4x + 4 ) - 4

= ( x + 2 )2 - 4 ≥ -4 ∀ x

Đẳng thức xảy ra <=> x + 2 = 0 => x = -2

=> MinC = -4 <=> x = -2

D = x2 - 8x + 17

= ( x2 - 8x + 16 ) + 1

= ( x - 4 )2 + 1 ≥ 1 ∀ x

Đẳng thức xảy ra <=> x - 4 = 0 => x = 4

=> MinD = 1 <=> x = 4

E = x2 - 7x + 1

= ( x2 - 7x + 49/4 ) - 45/4

= ( x - 7/2 )2 - 45/4 ≥ -45/4 ∀ x

Đẳng thức xảy ra <=> x - 7/2 = 0 => x = 7/2

=> MinE = -45/4 <=> x = 7/2

13 tháng 2 2019

a, ĐKXĐ: \(x\ne-3\) và \(x\ne\pm1\)

b, \(P=\frac{x\left(x+3\right)-11+x^2-3x+9}{x^3+27}:\frac{x^2-1}{x+3}\)

\(P=\frac{2x^2-2}{x^3+27}.\frac{x+3}{x^2-1}\)

\(=\frac{2\left(x-1\right)\left(x+1\right)}{\left(x+3\right)\left(x^2-3x+9\right)}.\frac{x+3}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{2}{x^2-3x+9}\)

c, \(P=\frac{2}{x^2-3x+9}==\frac{2}{\left(x-\frac{3}{2}\right)^2+\frac{27}{4}}\le\frac{2}{\frac{27}{4}}=\frac{8}{27}\)

Dấu "=" xảy ra khi: \(x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)

Vậy P lớn nhất bằng \(\frac{8}{27}\) \(\Leftrightarrow x=\frac{3}{2}\)

\(P=\left(\frac{x}{x^2-3x+9}-\frac{11}{x^3+27}+\frac{1}{x+3}\right):\frac{x^2-1}{x+3}.\)

ĐKXĐ : \(x\ne-3;x\ne0\)

\(P=\left(\frac{x\left(x+3\right)}{\left(x+3\right)\left(x^2-3x+9\right)}-\frac{11}{\left(x+3\right)\left(x^2-3x+9\right)}+\frac{x^2-3x+9}{\left(x+3\right)\left(x^2-3x+9\right)}\right).\frac{x+3}{x^2-1}\)

\(P=\left(\frac{x^2+3x-11+x^2-3x+9}{\left(x+3\right)\left(x^2-3x+9\right)}\right).\frac{x+3}{x^2-1}\)

\(P=\frac{2x^2-2}{\left(x^2-3x+9\right)}.\frac{1}{x^2-1}=\frac{2\left(x^2-1\right)}{\left(x^2-3x+9\right)}.\frac{1}{x^2-1}\)

\(P=\frac{2}{x^2-3x+9}\)

15 tháng 7 2018

a) Để \(\frac{17}{3-x}\) đạt giá trị nguyên lớn nhất

=> 3 - x đạt giá trị nhỏ nhất \(\left(3-x\ne0\right)\) ( x thuộc Z)

\(3-x\ge1\)

Dấu "=" xảy ra khi

3-x = 1

x = 2

=> giá trị lớn nhất của 17/3-x = 17/3-2 = 17/1 = 17

KL: giá trị lớn nhất của 17/3-x là 17 tại x = 2

15 tháng 7 2018

b) Đặt \(B=\frac{32-2x}{11-x}=\frac{12+22-2x}{11-x}=\frac{12+2.\left(11-x\right)}{11-x}=\frac{12}{11-x}+2\)

Để B đạt giá trị nguyên lớn nhất

=> 12/11-x đạt giá trị nguyên lớn nhất

=> 11 - x đạt giá trị nguyên nhỏ nhất ( 11 - x khác 0, x thuộc Z)

\(11-x\ge1\)

Dấu "=" xảy ra khi

11 - x = 1

x = 10

=> giá trị lớn nhất của B là: B = 12/11-x +2 = 12/11-10 + 2 = 12/1 + 2 = 12 + 2 = 14

KL: giá trị lớn nhất của B = 14 tại x = 10

x=11

nên x+1=12

\(x^4-12x^3+12x^2-12x+111\)

\(=x^4-x^3\left(x+1\right)+x^2\left(x+1\right)-x\left(x+1\right)+111\)

\(=x^4-x^4-x^3+x^3+x^2-x^2-x+111\)

=111-x

=111-11=100

27 tháng 6 2017

C = -( 9x2 -2x +1) -17

= -(3x-1)2-17

ta có -(3x-1)2 bé hơn hoặc bằng 0 với mọi x

nên -(3x-1)2 -17 bé hơn hoặc bằng -17 với mọi x

vậy.............

27 tháng 6 2017

\(C=-9x^2+2x-17\)

\(=-9\left(x^2-2.\dfrac{1}{9}x+\dfrac{1}{81}\right)-\dfrac{152}{9}\)

\(=-9\left(x-\dfrac{1}{9}\right)^2-\dfrac{152}{9}\)

\(-9\left(x-\dfrac{1}{9}\right)^2\le0\)

Nên \(-9\left(x-\dfrac{1}{9}\right)^2-\dfrac{152}{2}\le0\)

Vậy C luôn âm với mọi giá trị của biến

\(D=-5x^2-6x-11\)

\(=-5\left(x^2+2.\dfrac{3}{5}x+\dfrac{9}{25}\right)-\dfrac{46}{5}\)

\(=-5\left(x+\dfrac{3}{5}\right)^2-\dfrac{46}{5}\)

\(-5\left(x+\dfrac{3}{5}\right)^2\le0\)

Nên \(-5\left(x+\dfrac{3}{5}\right)^2-\dfrac{46}{5}\le0\)

vậy D luôn âm với mọi giá trị của biến

\(E=\dfrac{-1}{4}x^2+3x-15\)

\(=-\dfrac{1}{4}\left(x^2-12x+36\right)-6\)

\(=-\dfrac{1}{4}\left(x-6\right)^2-6\le0\)

Vậy E luôn âm với mọi giá trị

27 tháng 5 2017

\(B=x^5-15x^4+16x^3-29x^2+13x\)

\(=x^5-14x^4-x^4+14x^3+2x^3-28x^2-x^2+14x-x+14-14\)

\(=x^4\left(x-14\right)-x^3\left(x-14\right)+2x^2\left(x-14\right)-x\left(x-14\right)-\left(x-14\right)-14\)

\(=\left(x^4-x^3+2x^2-x-1\right)\left(x-14\right)-14\)

Thay x = 14 => B = -14

Vậy...

phần còn lại tách ra làm tương tự nhé

3 tháng 3 2018

cu tao to